数学
ChingeWang
Will history know your name? will the universe know you existed?
展开
-
协方差直观理解
协方差其意义:度量各个维度偏离其均值的程度。协方差的值如果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),结果为负值就说明负相关的,如果为0,也是就是统计上说的“相互独立”。如果正相关,这个计算公式,每个样本对(Xi, Yi), 每个求和项大部分都是正数,即两个同方向偏离各自均值,而不同时偏离的也有,但是少,这样当样本多时,总和结果为正。下面这个图就很直观。下面转载自:ht...原创 2019-05-24 19:40:01 · 1137 阅读 · 0 评论 -
高斯混合模型原理直观理解
转载:http://www.ituring.com.cn/article/497545什么是高斯混合模型(Gaussian Mixture Model)高斯混合模型(Gaussian Mixture Model)通常简称GMM,是一种业界广泛使用的聚类算法,该方法使用了高斯分布作为参数模型,并使用了期望最大(Expectation Maximization,简称EM)算法进行训练。本文...原创 2019-06-01 19:04:03 · 3420 阅读 · 0 评论 -
方差与协方差的关系
附注:笔者理解:1. 方差用于反应数据的离散程度,期望用于反应数据的聚合情况。2. 协方差用于反映两个维度之间的数据偏离期望值的相关性,若同时偏离,即为正相关,数据上现象为:(某维度偏离点-均值)*(另一维度-均值)>0,同时也能反映偏离强度,若协方差结果越大,则说明同时偏离程度大,相关性越强。以下转自:https://blog.csdn.net/qq_33626989/art...原创 2019-06-01 21:18:49 · 62603 阅读 · 0 评论 -
离散数学干货
文章目录定义定义简单图: 既不含平行边也不含自环的图。且|E|<=|V|(|V|-1)/2完全图: 每对顶点之间都恰连有一条边的图关联矩阵:反应点与边连接情况的行列式如何判断两图是否同构:写出关联矩阵,通过行列互换,若一致则同构握手定理:图所有节点的度数和等于边数的两倍。意味着图的度数列之和应该为偶数。简单图的度数列判定方法:满足|E|<=|V|(|V|-1)/2且满足握...原创 2019-07-02 14:03:34 · 5388 阅读 · 0 评论 -
划分问题之泰森多边形简介
泰森多边形文章目录泰森多边形简介性质用途简介图1泰森多边形又叫冯洛诺伊图(Voronoi diagram)。性质图1为泰森多边形,其中:每个划分区域有且仅有有一个样点,也叫做控制点、居名点,离散点一个划分区域内的任一点到构成该多边形的样点的距离小于到其他多边形控制点的距离位于泰森多边形上的点到其两边样点的距离相等用途由于泰森多边形具有在空间剖分上的等分...原创 2019-09-09 12:11:07 · 3871 阅读 · 0 评论 -
机器学习经典算法----时间序列模型ARIMA
文章目录模型平稳性与差分法平稳性差分法ARIMA模型 [^1][^2][^3]AR模型MA模型ARMA模型相关函数评估法建立ARIMA模型参数选择模型平稳性与差分法平稳性平稳性要求样本具有一定的“周期”规律,以保证样本在未来一段时间内仍能顺着现有的状态“惯性”地延续下去。只有对于有规律可循的样本,我们才能通过手段对其预测。平稳性要求时间序列上的样本的均值和方差不能发生明显变化。平...原创 2019-09-29 22:29:16 · 3889 阅读 · 3 评论 -
Review of Classic Clustering Algorithms
Review of Classic Clustering AlgorithmsJinZhi Wang文章目录AbstractIntroduction:Clustering Concept and Clustering ProcessClustering ConceptClustering Process[^2]Classical Clustering AlgorithmsExperimen...原创 2019-10-04 11:49:35 · 924 阅读 · 0 评论