原题链接:https://leetcode-cn.com/problems/airplane-seat-assignment-probability/
假设有n个人,即n个座位,当第1个人入座时有三种情况
- 坐在第1位,2~n都正常入座
- 坐在第n位,2~n-1都正常入座,n坐在第1位
- 坐在第2~n-1位,此时后面的座位会受到影响
情况1和情况2出现的概率为1/n,情况3出现的概率为(n-2)/n
对于情况3,假设第1人坐在第2位上,则其实对于第2个人来说,此时问题规模为n-1(1和3 ~ n),其实分析后发现,当2坐在第1位时,3 ~ n都会正常入座,和第1位本来就是2的座位效果相同。那么我们如果把座位1看做本来就是2的座位,那么情况就变成了问题规模为n-1的原问题了,于是有递推式:
f(n)=1/n+(n-2)/n*f(n-1)
由递推式我们可以写出递归代码:
double nthPersonGetsNthSeat(int n) {
if(n==1) return 1.0;
return 1.0/n+(n-2.0)/n*nthPersonGetsNthSeat(n-1);
}
本文详细解析了LeetCode上的飞机座位概率问题,通过分析不同入座情况的概率,得出递推公式,并提供了递归代码实现。关键在于理解第一人入座后的座位影响及问题规模的变化。
4万+

被折叠的 条评论
为什么被折叠?



