自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

qq_34446716的博客

努力学习,努力赚钱

  • 博客(969)
  • 资源 (1)
  • 收藏
  • 关注

原创 2. 微信开发工具快捷键

OPTION + Shift + F 格式化代码。按住OPTION 就可以多行操作或者复制了。

2026-01-12 22:55:04 115

原创 1.标签定义

text {}是对的,因为<text>真存在line {}是错的,因为<line>不存在.line {}永远安全如果你愿意,我可以帮你列一份小程序常用内置标签 & 是否适合直接写标签选择器的清单。

2026-01-05 22:21:30 352

原创 [9]. SpringAI Alibaba MCP

模型上下文协议function calling 每次都要重复开发工具,MCP相当于把这些工具共用。

2025-11-13 20:56:28 325 1

原创 [8]. SpringAI Alibaba Tool Calling

等于 function call。

2025-11-11 21:47:00 179

原创 [7]. SpringAI Alibaba RAG增强检索生成

【代码】[7]. SpringAI Alibaba RAG增强检索生成。

2025-11-11 20:51:31 192

原创 [6]. SpringAI Alibaba 向量化和向量数据库

向量:带有方向的量VectorStoreRedis stack

2025-11-11 20:17:41 264

原创 [5]. SpringAI Alibaba 文生图 文生音

【代码】[5]. SpringAI Alibaba 文生图 文生音。

2025-11-08 16:03:29 251

原创 [4]. SpringAI Alibaba 格式化输出与chat memory

structured output基于。

2025-11-08 09:43:18 197

原创 [3]. SpringAI Alibaba 提示词和模版

如果想更好的利用AI,使用更好的提示词。

2025-11-04 08:13:02 195

原创 [2]. SpringAI Alibaba SSE输出流

SSE是单向的,WebSocket是双向一个是基于HTTP一个是wss或者ws协议SSE的下一代 Streamable HTTP。

2025-11-03 22:04:20 240

原创 [1]. SpringAI Alibaba 是什么以及对比

SAA 学习

2025-10-30 08:00:18 245

原创 Python学习(12) ----- Python的异步操作

举个生活中的例子👇Python 的异步操作让程序在“等待”的时候也能去干别的事,从而更高效地利用时间。async def加了async的函数不会立刻执行,而是返回一个协程对象(coroutine)。要执行它,必须await它,或者交给事件循环去跑。

2025-10-28 20:47:49 813

原创 Python学习(11) ----- Python的泛型

在 Python 中,的概念主要用于,帮助开发者在静态类型检查时(例如使用mypypyright)获得更精确的类型推断。泛型不影响程序的,而是让代码在。

2025-10-22 22:58:07 596 1

原创 Python学习(10) ----- Python的继承

特性说明关键语法单继承子类继承一个父类多继承子类继承多个父类方法重写子类覆盖父类方法同名函数调用父类方法使用super()泛型继承为继承关系加类型参数是否希望我帮你用一段完整的代码演示“父类 + 子类 + super 调用 + 重写 + 多继承”的组合例子?这样你会对继承的运行顺序(MRO)也一目了然。概念说明MROMethod Resolution Order,方法解析顺序作用决定 Python 多继承时的查找顺序查看方式或算法C3 线性化算法super() 行为。

2025-10-21 22:36:11 1088 1

原创 [极客时间]LangChain 实战课 ----- 代理(上)|(12)ReAct框架,推理与行动的协同

2025-08-16 08:41:54 302

原创 2. Agent与 React流程

re plan的具体操作。

2025-07-30 21:32:12 242

原创 [极客时间]LangChain 实战课 -----|(11) 记忆:通过Memory记住客户上次买花时的对话细节

在默认情况下,无论是 LLM 还是代理都是无状态的,每次模型的调用都是独立于其他交互的。也就是说,我们每次通过 API 开始和大语言模型展开一次新的对话,它都不知道你其实昨天或者前天曾经和它聊过天了。你肯定会说,不可能啊,每次和 ChatGPT 聊天的时候,ChatGPT 明明白白地记得我之前交待过的事情。的确如此,ChatGPT 之所以能够记得你之前说过的话,正是因为它使用了记忆(Memory)机制,记录了之前的对话上下文,并且把这个上下文作为提示的一部分,在最新的调用中传递给了模型。在聊天机器人的构

2025-07-30 21:09:06 804

原创 3. 装修梳理

刮大白或刷油漆时,要对其他已完成的加装部分做保护处理,覆盖保护膜,避免施工过程中附着太多的灰尘,后续难以打理,来往施工过程中造成的擦痕也很难处理。3.厨房的电线和开关一定要使用大功率的,因为厨房用电量较多,小功率容易出现爆炸,在买这些电料和水管件时,一定要识别国标产品,符合国家绿色环保的材料,才能保障家人的健康和安全。1.在拆墙时一定要注意千万不要拆改原有的承重墙,拆除承重墙容易让房屋整体构造丧失稳固性,时间久了会墙体开裂,影响房屋的使用寿命,抗震能力大大减弱,留下安全隐患。

2025-07-23 08:26:24 181

原创 2. 什么是好工作

整理一份从1990年代至今,中国社会认知中对“好工作”定义的演变,包括各阶段主流职业类型、影响因素(如经济、政策、教育)和社会认同的变化趋势。

2025-07-23 08:17:22 894

原创 1. COLA-DDD的实战

springBoot开发。start是应用入口。

2025-07-10 22:39:01 178

原创 [极客时间]LangChain 实战课 -----|(10) 链(下):想学“育花”还是“插花”?用RouterChain确定客户意图

上一节课中,我带着你学习了 Chain 的基本概念,还使用了 LLMChain 和 SequencialChain,这一节课,我们再来看看其他类型的一些 Chain 的用法。首先,还是先看一下今天要完成一个什么样的任务。这里假设咱们的鲜花运营智能客服 ChatBot 通常会接到两大类问题。你的需求是,如果接到的是第一类问题,你要给 ChatBot A 指示;如果接到第二类的问题,你要给 ChatBot B 指示。我们可以根据这两个场景来构建两个不同的目标链。遇到不同类型的问题,LangChain 会通过

2025-07-03 22:22:22 888

原创 [极客时间]LangChain 实战课 -----|(9) 链(上):写一篇完美鲜花推文?用SequencialChain链接不同的组件

但是,如果你想开发更复杂的应用程序,那么就需要通过 “Chain” 来链接 LangChain 的各个组件和功能——模型之间彼此链接,或模型与其他组件链接。这种将多个组件相互链接,组合成一个链的想法简单但很强大。它简化了复杂应用程序的实现,并使之更加模块化,能够创建出单一的、连贯的应用程序,从而使调试、维护和改进应用程序变得容易。说到链的实现和使用,也简单。首先 LangChain 通过设计好的接口,实现一个具体的链的功能。

2025-06-30 22:43:32 873

原创 [极客时间]LangChain 实战课 -----|(8) 输出解析:用OutputParser生成鲜花推荐列表

先创建了一个空的 DataFrame,用于存储从模型生成的描述。接下来,通过一个名为 FlowerDescription 的 Pydantic BaseModel 类,定义了期望的数据格式(也就是数据的结构)。# 创建一个空的DataFrame用于存储结果# 数据准备flowers = ["玫瑰", "百合", "康乃馨"]# 定义我们想要接收的数据格式flower_type: str = Field(description="鲜花的种类")

2025-06-25 21:50:36 856

原创 [极客时间]LangChain 实战课 -----|调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM?(7)

今天的课程到此就结束了,相信你学到了很多新东西吧。的确,进入大模型开发这个领域,就好像打开了通往新世界的一扇门,有太多的新知识,等待着你去探索。现在,你已经知道大模型训练涉及在大量数据上使用深度学习算法,通常需要大量计算资源和时间。训练后,模型可能不完全适合特定任务,因此需要微调,即在特定数据集上继续训练,以使模型更适应该任务。为了减小部署模型的大小和加快推理速度,模型还会经过量化,即将模型参数从高精度格式减少到较低精度。如果你想继续深入学习大模型,那么有几个工具你不得不接着研究。

2025-06-24 22:35:40 1009

原创 [极客时间]LangChain 实战课 -----|提示工程(下):用思维链和思维树提升模型思考质量(6)

这节课我们介绍了 Chain of Thought(CoT,即“思维链”)和 Tree of Thoughts(ToT,即“思维树”)这两个非常有趣的概念,并探讨了如何利用它们引导大型语言模型进行更深入的推理。CoT 的核心思想是通过生成一系列中间推理步骤来增强模型的推理能力。在 Few-Shot CoT 和 Zero-Shot CoT 两种应用方法中,前者通过提供链式思考示例传递给模型,后者则直接告诉模型进行要按部就班的推理。

2025-06-21 15:50:57 849

原创 [极客时间]LangChain 实战课 -----|提示工程(上):用少样本FewShotTemplate和ExampleSelector创建应景文案(05)

当你用 print 语句打印出最终传递给大模型的提示时,一切就变得非常明了。秘密在于,LangChain 的输出解析器偷偷的在提示中加了一段话,也就是 {format_instructions} 中的内容。这段由 LangChain 自动添加的文字,就清楚地指示着我们希望得到什么样的回答以及回答的具体格式。提示指出,模型需要根据一个 schema 来格式化输出文本,这就是在告诉模型,你就 follow 这个 schema(schema,可以理解为对数据结构的描述)的格式,就行啦!

2025-06-17 22:27:08 772

原创 [极客时间]LangChain 实战课 -----|模型I/O:输入提示、调用模型、解析输出(04)

从这节课开始,我们将对 LangChain 中的六大核心组件一一进行详细的剖析。模型,位于 LangChain 框架的最底层,它是基于语言模型构建的应用的核心元素,因为所谓 LangChain 应用开发,就是以 LangChain 作为框架,通过 API 调用大模型来解决具体问题的过程。可以说,整个 LangChain 框架的逻辑都是由 LLM 这个发动机来驱动的。没有模型,LangChain 这个框架也就失去了它存在的意义。

2025-06-15 19:47:08 256

原创 Python学习(9) ----- Python的Flask

Flask 是 Python 中用于构建 Web 应用的轻量级框架,它提供了强大的自由度与良好的扩展能力,适合快速开发原型、小型服务和接口型项目。对于学习 Web 编程、后端开发、甚至人工智能服务部署的开发者来说,Flask 是一把高效、灵活的利器。如果你正在学习 Python,想体验从“写脚本”到“搭建网站”的全过程,不妨尝试 Flask。你会发现,它简单到只需几行代码就能搭建起一个 Web 服务,也灵活到可以支撑复杂的企业级项目。

2025-06-13 20:56:18 1156 2

原创 [极客时间]LangChain 实战课 -----|LangChain系统安装和快速入门(3)

在深入讲解 LangChain 的每一个具体组件之前,我想带着你从头完成一个很实用、很有意义的实战项目。目的就是让你直观感受一下 LangChain 作为一个基于大语言模型的应用开发框架,功能到底有多么强大。好的,现在就开始!整个框架分为这样三个部分。**核心实现机制:**这个项目的核心实现机制是下图所示的数据处理管道(Pipeline)。在这个管道的每一步中,LangChain 都为我们提供了相关工具,让你轻松实现基于文档的问答功能。具体流程分为下面 5 步。上面 5 个环节的介绍都非常简单,有些概念

2025-06-12 22:21:18 1112

原创 [极客时间]LangChain 实战课 -----|LangChain系统安装和快速入门(2)

大语言模型是一种人工智能模型,通常使用深度学习技术,比如神经网络,来理解和生成人类语言。这些模型的“大”在于它们的参数数量非常多,可以达到数十亿甚至更多,这使得它们能够理解和生成高度复杂的语言模式。你可以将**大语言模型想象成一个巨大的预测机器,其训练过程主要基于“猜词”:**给定一段文本的开头,它的任务就是预测下一个词是什么。模型会根据大量的训练数据(例如在互联网上爬取的文本),试图理解词语和词组在语言中的用法和含义,以及它们如何组合形成意义。它会通过不断地学习和调整参数,使得自己的预测越来越准确。

2025-06-10 22:57:39 889 3

原创 [极客时间]LangChain 实战课 ----- 开篇词|带你亲证AI应用开发的“奇点”时刻(1)

在这个模块中,我会介绍 LangChain 系统的安装流程,以及如何进行快速的入门操作。同时,详细指导你如何使用 LangChain 来构建一个基于“易速鲜花”本地知识库的智能问答系统,让你直接感受 LangChain 强大的功能。

2025-06-09 22:08:00 686

原创 Python学习(8) ----- Python的类与对象

self.name = name # 实例属性def say_hello(self): # 实例方法class Person : def __init__(self , name , age) : self . name = name # 实例属性 self . age = age def say_hello(self) : # 实例方法 print(f"Hello, my name is {

2025-06-09 21:11:57 415

原创 Python学习(7) ----- Python起源

Python 有个“禅”,也就是它的哲学。“美丽优于丑陋。这,就是 Python 的灵魂。是 Python 语言里一个非常有趣的“彩蛋”。虽然不执行任何程序逻辑,但它代表了Python 背后的美学和哲学思想,是每个 Pythoner 入门时值得一看的“宣言”。如果你希望我解释每一条原则的实际意义与示例,我也可以一条条帮你解读。要试试看吗?

2025-06-08 21:45:02 991

原创 Python学习(6) ----- Python2和Python3的区别

特性Python2Python3打印语法print语句print()函数除法行为整除(除非引入 future)浮点除法字符串默认类型ASCII (strUnicode (strrange()列表可迭代对象(生成器)input()字符串类定义有旧式和新式类统一为新式类异常写法。

2025-06-04 22:39:03 1245

原创 Python学习(5) ----- Python的JSON处理

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,常用于 API 和配置文件。"name": "张三","age": 28,"city": "北京",Python 提供内置模块json,支持 JSON 和 Python 对象之间的序列化(encode)和反序列化(decode)。

2025-05-30 19:48:25 768

原创 Python学习(4) ----- Python的CSV文件处理

在 Python 中,读取 CSV 文件最常用的方式是使用标准库中的 csv模块。

2025-05-29 21:50:57 550

原创 Python学习(3) ----- Python的函数定义及其使用

def 函数名(参数1, 参数2=默认值, *args, **kwargs):"""函数说明文档"""函数体return 返回值。

2025-05-28 21:27:30 520

原创 Python学习(2) ----- Python的数据类型及其集合操作

class Dog:my_set2 = set([4, 5, 6]) # 使用 set() 构造会变成{1, 2, 3}元素无序:无法通过索引访问,如set[0]是错误的可进行集合运算(交、并、差等)print(a | b) # 并集 => {1, 2, 3, 4, 5}print(a & b) # 交集 => {3}print(a - b) # 差集 => {1, 2}

2025-05-27 21:48:43 709

原创 Python学习(1) ----- Python的文件读取和写入

在 Python 中,读取文件有几种常用方式,适合不同的应用场景。

2025-05-27 21:28:51 668

原创 通用的管理账号设置设计(一)

通用的管理系统设计

2025-05-26 22:02:44 238

第十一章并发上海交大.pdf

数据库 数据库 数据库 数据库 数据库

2020-07-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除