计算机毕业设计django基于python智能在线考试阅卷系统

本文探讨了利用Python和Django框架开发的在线考试阅卷系统,介绍了系统背景、技术选型(如Python3.7.7、Django/FALSK、mysql5.7)、功能模块(教师端、学生端、自动阅卷等)以及开发流程。系统经过功能测试和性能测试,证明其可行性。
摘要由CSDN通过智能技术生成

项目介绍

随着计算机多媒体技术的发展和网络的普及。采用当前流行的B/S模式以及3层架构的设计思想通过Python技术来开发此系统的目的是建立一个配合网络环境的基于python的学校对在线考试阅卷系统的平台,这样可以有效地解决基于python的在线考试阅卷系统混乱的局面。
本文首先介绍了基于python的在线考试系统的发展背景与发展现状,然后遵循软件常规开发流程,首先针对系统选取适用的语言和开发平台,根据需求分析制定模块并设计数据库结构,再根据系统总体功能模块的设计绘制系统的功能模块图,流程图以及E-R图。然后,设计框架并根据设计的框架编写代码以实现系统的各个功能模块。最后,对初步完成的系统进行测试,主要是功能测试、单元测试和性能测试。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。

运行环境

开发语言:Python
框架:django/FALSK
Python版本:python3.7.7
数据库:mysql 5.7(一定要5.7版本)
数据库工具:Navicat11
开发软件:PyCharm
浏览器:谷歌浏览器

功能介绍

功能模块:
登录分为教师端和学生端,需要有验证码
教师端:
试题管理:出题(实现对试题的增删改查)、发布考试
评卷管理:分为主观题教师阅卷(需要你们实现),主观题系统阅卷(只需要一个界面,不需要实现),其他单选、多选、判断、填空题均需系统自动阅卷(需要你们实现)
成绩查询:查看每个学生的成绩、能看到各个班级和各个科目的平均分、最高分、最低分

学生端:
答题、查看自己成绩(包括查看正确答案)、分析在本次考试中哪个知识点未掌握

效果图

请添加图片描述
请添加图片描述

请添加图片描述
请添加图片描述

请添加图片描述

目 录
摘 要 I
ABSTRACT II
目 录 II
第1章 绪论 1
1.1背景及意义 1
1.2 国内外研究概况 1
1.3 研究的内容 1
第2章 相关技术 3
2.1 Python简介 4
2.2 Django 框架介绍 6
2.3 B/S结构 4
2.4 MySQL数据库 4
第3章 系统分析 5
3.1 需求分析 5
3.2 系统可行性分析 5
3.2.1技术可行性:技术背景 5
3.2.2经济可行性 6
3.2.3操作可行性: 6
3.3 项目设计目标与原则 6
3.4系统流程分析 7
3.4.1操作流程 7
3.4.2添加信息流程 8
3.4.3删除信息流程 9
第4章 系统设计 11
4.1 系统体系结构 11
4.2开发流程设计系统 12
4.3 数据库设计原则 13
4.4 数据表 15
第5章 系统详细设计 19
5.1管理员功能模块 20
5.2用户功能模块 23
5.3前台功能模块 19
第6章 系统测试 25
6.1系统测试的目的 25
6.2系统测试方法 25
6.3功能测试 26
结 论 28
致 谢 29
参考文献 30

基于Python的主观题自动阅卷系统是一种利用人工智能和自然语言处理技术实现的自动化评分工具。该系统旨在减轻教师在批改大量主观题时的负担,提高评分效率和准确性。以下是关于这个系统的简要介绍:功能特点:自动识别题目类型:系统可以识别不同类型的主观题,如填空题、选择题、简答题等,从而为每种类型的题目提供相应的评分标准。智能评分:系统通过深度学习算法对学生的答案进行分析,根据预设的评分规则为每个答案打分。这有助于减少人为评分过程中的主观性和偏见。错误纠正:系统能够识别并纠正学生在作答过程中可能犯的常见错误,如拼写错误、语法错误等,从而提高评分的准确性。反馈与建议:系统会为学生提供详细的评分报告,包括正确答案、得分情况以及可能存在的改进空间。这有助于学生了解自己的优缺点,提高学习效果。应用场景:基于Python的主观题自动阅卷系统适用于各类教育机构,如学校、培训机构等。它可以帮助教师更高效地批改大量主观题,节省时间和精力,同时提高评分质量。此外,该系统还可以应用于在线教育平台,为学生提供实时、准确的评估服务。技术实现:基于Python的主观题自动阅卷系统主要依赖于自然语言处理(NLP)技术和机器学习算法。具体来说,它可能包括以下几个方面的技术实现:文本预处理:对学生的答案进行分词、去停用词、词干提取等操作,以便后续的分析和评分。特征提取:从预处理后的文本中提取有用的特征信息,如关键词、短语等,用于后续的评分计算。模型训练:使用深度学习算法(如神经网络)对提取的特征进行训练,以便生成一个能够自动评分的模型。结果输出:将评分结果以可视化的形式呈现给用户,如表格、图表等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值