基于协同过滤算法的美食数据分析与可视化实现论文

摘 要

美食数据分析与可视化是一个功能强大的工具,旨在深入挖掘和利用用户、订单、商家及市场等海量数据。通过先进的数据采集、处理、分析和可视化技术,该系统为美食的业务决策提供有力支撑。
该系统实时采集各类数据,并经过严格的数据清洗和整合,确保数据的准确性和可靠性。基于这些数据,系统能够深入剖析用户行为、订单趋势、商家运营状况以及市场变化,从而揭示业务发展的内在规律和潜在机会。
通过数据可视化技术,美食数据分析与可视化能够将复杂的分析结果以直观易懂的形式呈现出来,帮助决策者快速把握业务现状和未来趋势。此外,系统还提供交互式数据探索功能,使用户能够根据自身需求进行灵活的数据查询和分析,进一步挖掘数据的价值。
美食数据分析与可视化广泛应用于个性化推荐、智能客服、精准营销等多个场景,有效提升了用户体验、服务质量和市场推广效果。通过不断优化和完善数据分析系统,美食将能够更好地把握市场机遇,实现持续稳健的发展。

关键词:美食数据分析与可视化;Django框架;Mysql数据库

1系统分析

3.1整体分析
通过对美食中所有美食销售数据进行爬取,并将销售数据信息以文件形式存储于本地文件中,之后使用Python编程语言和Pyecharts第三方可视化图库编程实现了对美食数据可视化的功能。最终编写的程序达到了输入美食名称,程序可以生成对应美食统计数据的可视化图表的目的,以直观高效快捷的可视化图表形式展现。提高了对于不同销售美食可视化数据分析的效率,为不同美食销售数据的可视化设计提供了新的思路。帮助商家更好地分析了解不同美食销售情况,预测消费者对各产品的购买行为,在新产品后期的营销过程中有针对性的进行推荐。
3.2功能需求分析
通过研究,以Mysql为后端数据库,以Python为前端技术,以Idea为开发平台,采用Django架构,主要爬取携程美食网站关于美食的数据,爬取到的数据存入本地mysql数据库。开发一套vue+echart的前端系统,对爬虫的数据进行数据处理,通过预测模型和协同过滤等算法进行数据的加工和分析,最终将处理好的数据进行可视化大屏展示,包括云词展示,图表展示等。这次开发的美食信息推荐系统对菜谱管理、美食信息管理、论坛管理、论坛收藏管理、饮食资讯管理、用户管理、管理员管理等进行集中化处理的美食数据分析与可视化。
本文从美食数据分析与可视化管理的实际需要出发,为降低系统的耦合性,采用DJANGO框架集完成了系统总体架构的设计,以提高系统的重用性、可适用性及可维护性。
系统包括管理员和用户两个角色;
管理员用例如下所示:
在这里插入图片描述

图3-1 管理员用例图
用户用例如下所示:
在这里插入图片描述

图3-2 用户用例图

3.3 系统可行性分析
操作可行性:该应用系统的用户界面被设计成简洁易用,符合用户的操作习惯,可以通过常用的浏览器进行访问。这种操作方式符合人们的日常生活习惯,使消费者和管理员能够更便捷地使用应用系统,提高了用户体验。
技术可行性:技术可行性评估包括审查所选技术栈(如Java、Django框架和MySQL数据库),以确认是否满足项目需求。确保开发团队具备必要技术技能,如Java的广泛应用需要考虑团队经验,Django框架和MySQL数据库也需专业人员。通过评估,确保在技术层面成功满足美食数据分析系统需求。
经济可行性:应用系统的开发过程中使用的软件和系统都是成熟且免费的,不需要额外的金钱投入。对于消费者来说,该系统提供了便捷的快递体验,节省了美食数据分析的时间。对于管理人员来说,系统的自动化功能节省了大量的人力物力成本,提高了效率。因此,从经济角度看,该应用系统具有可行性。
3.4协同过滤推荐技术
3.3.1 协同过滤概况  
什么是推荐?当您在思考自己对日常生活感兴趣的事情时遇到困难时,您经常会问经验丰富的朋友一起做最后 的决定。消费者购买音乐时,通常会通过参考购买者的评论和音乐排名来考虑是否购买。但是有时消费者会后悔购 买。换句话说,保持大众风格并不一定适合您的口味。因此,您可以通过将自己的主观意识添加到其他人给出的客 观意见中,来决定购买尚未触及的东西。如今,个性化推荐系统已成为网络领域最重要的信息服务应用程序之一。 便捷有效的电子商务推荐系统可以极大地提高经济效益,例如亚马逊,京东,淘宝和抖音。   
为了快速准确地推荐信息,推荐系统要创建每个用户的个人信息矩阵,然后用户购买产品并通过产品评论和客 户记录获取用户画像,并通过Internet浏览特征,习惯和口味等信息。然后个性化推荐系统将新信息与用户的矩阵 进行匹配,以获得与用户相关的内容, 首选项和功能可以帮助用户过滤掉许多令人困惑的信息的有用部分。 或找 到一个类似的小组,最后得到一个满足用户喜好的产品或服务。 其流程如图1所示。

在这里插入图片描述

图 1推荐系统框架流程

3.3.2协同过滤算法
(1)基于内容的推荐 
基于内容推荐本质上是信息过滤技术的更高层次发展。 该系统不需要从用户的项目中获取评论,仅需要学习用 户在历史记录中选择的内容信息。 因此,提出了项目建议。 图2显示了基于内容推荐的流程图。
在这里插入图片描述

图 2 基于内容的推荐

该技术的推荐首先需要统计用户的基本信息。例如,该用户频繁登录哪些网站?使用的网站主要提供的服务是 什么,有哪些特点?产品本身有特征序列,因此可以将一组产品视为一组属性序列。另一方面,可以基于这些属性 的序列性来解释用户的兴趣和偏好。因此,可以根据每种产品的属性列出日本的进口预测项目。因此,在进行产品 预测时,您可以按每种产品的属性创建一列,并将其与用户的历史选择进行比较,以确定是否可以将该产品引入用 户。
(2)协同过滤推荐   
协同过滤基于共享相同兴趣和共享体验的用户来推荐用户感兴趣的内容。 个人在很大程度上通过协作机制基于 信息做出反应。通过评估和记录已达到过滤目标来帮助其他人过滤信息。因此,推荐对象需要特殊的过滤技术以实 现优于传统推荐方法的显着优势,即使对于难以分析内容的抽象元素也可以进行打分推荐。此外,对用户提供服务 时,系统自动计算该用户的行为,无需与用户互动,只需通过分析用户的购买历史和产品评分等信息。得出结果时 间短暂且准确,用户在不知不觉中增加了使用软件的时间。因此该技术广受欢迎,已经受到更多应用的青睐,并且 受到了越来越多的学术兴趣。   
协同过滤技术推荐过程完全由电脑自己学习,不需要认为干涉,而且也不需要用户填写极其准确的信息。例如 该算法通过分析用户的浏览路径和购买物品。用户不需要填写调查表来提交自己的兴趣信息。协同过滤算法相较于 之前的推荐算法有以下特点:   
1)根据传统内容进行过滤时,产品关键字提取过程中可能出现出不完整和不准确的情况,或者有些不能用词语 形容的项目,很难用文本分割的办法得出推荐,比如一些抽象的概念,例如情感,音乐口味等难以表达的概念。  
2) 在以往的推荐结果中,得出的结果往往是用户已经获得过的信息。并不能得出用户在未知领域预测。但是, 协同过滤推荐可以帮助识别潜在的用户兴趣并推荐用户不熟悉甚至未知的内容。   
3)减少用于生成建议的用户反馈。 协作过滤技术可最大程度地提高来自其他类似用户的反应,增加用户的爱 好机会,并加快个性化机器学习的速度,丰富了学习模型,同时产生了更好的建议。尽管协过滤被广泛应用为典型 建议,但它也带来了许多问题和挑战,数据稀疏和系统可扩展问题是较为典型的问题。
(3)协同过滤推荐原理  
 过滤推荐的基本思想非常直观和直接。在推荐目标用户时,根据“人以群分”的思想,依据同一类的用户的不 同信息为彼此生成推荐结果。协同过滤会计算项目中系统中其他所有用户的评估信息,利用相似性度量来比较当前 用户的一组感兴趣的邻居,由于该算法的个性化程度高,因此可以为当前用户预测感兴趣的项目,为用户发现并推 荐新的兴趣。
 在进行算法推荐之前,此算法基于一些情况。第一要求用户能够被依据爱好进行分类,第二是用户的兴趣信息 包含在用户的打分中。第三用户对没见过的物品的评分会和与他爱好相投的用户的评分相关。这三点构成了支持协 同滤波器算法的基础。 推荐的协同过滤算法包括三个步骤:用户评级,相似用户的选择以及获得推荐的排名。其流程如图3所示:
在这里插入图片描述

图 3 协同过滤推荐步骤

2系统设计

4.1 系统体系结构
美食数据分析与可视化的结构图4-1所示:
在这里插入图片描述

图4-1系统结构
登录系统结构图,如图4-2所示:
在这里插入图片描述

图4-2登录结构图
4.2 系统总功能结构设计
系统按照用户的实际需求开发而来,贴近生活。从管理员通过正确的账号的密码进入系统,可以使用相关的系统应用。管理员总体负责整体系统的运行维护,统筹协调。
系统整体模块设计:系统分为管理员和用户两大角色,系统管理员有最大的权限,总体功能展示如图4-3所示。
在这里插入图片描述

图4-3 系统总体功能图
4.3 数据库设计
在这个系统中,数据库是最坚实的基础,也是最重要的一环,它的设计质量直接关系到整个系统的成败。本章介绍了这一部分的数据库设计。Database是基于数据构造对数据进行布局、存储和管理的,距今大概有六百多年的时间,伴随着市场经济的进步,技术的进步,尤其是20世纪末,数据的管理不仅仅只是用于存储和管理数据,更是变成了按照使用者需求进行的多种数据管理方法,而且,数据库的种类很多,从最基本的存储和各类数据的表格,到可以存储大量数据的大数据库系统,都被广泛地用于各个行业。在现代信息社会,对各种信息数据的最大限度地进行管理和使用,是进行科学的调研和筛选管理的前提,而Database技术是管理信息系统、办公自动化系统、选择承诺系统等一系列信息系统中最重要的一个环节,也是开展科学探究和管理决策的重要途径。目前,DBMS已经由一个专门的发展工具发展成了一个综合的体系软件。因为它具有数据共享,结构化,最小重复,良好的数据独立性,方便扩展和编写应用程序等优点,所以一般大型的计算机软件都是在数据库基础上构建起来的。该数据库的建立,极大地提高了信息资源的可用性和互包含性,提高了信息系统的建设和管理水平,提高了数据的综合效率,提高了决策的准确性。目前,在各种信息系统中,数据库是一个不可或缺的重要环节,而数据库则是发展最快的一种。在建立一个资料库的过程中,最重要的一个问题就是把真实的模式和要求转换成真实的需要。数据库模式,要使一个良好的数据库应用程序得以实施,就要有一个良好的数据库,使其发挥出更大的作用。在数据库的结构中,对用户的数据进行规范化的储存,以便于使用者对其进行操作,是一个非常重要的问题。
实体信息将使用E-R图加以表示,本系统的主要功能实体图如下图所示:
在这里插入图片描述

图4-4用户实体属性图
在这里插入图片描述

图4-5用户表实体属性图
在这里插入图片描述

图4-6商家管理实体属性图
在这里插入图片描述

图4-7系统简介实体属性图

3 系统详细设计

5.1系统登录注册实现
系统用户登录,在登录页面选择需要登录的角色,在正确输入用户名和密码后,进入操作系统进行操作;如图5-1所示。
在这里插入图片描述

图5-1 系统登录界面
系统注册:在系统注册页面的输入栏中输入用户注册信息进行注册操作,系统注册页面如图5-2所示:
在这里插入图片描述

图5-2系统注册页面

5.2管理员模块实现系统首页、用户管理、美食管理、预测分析管理、系统管理、我的资料等功能进行操作。管理员首页面如图5-3所示:
在这里插入图片描述

图5-3 管理员首页界

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值