pandas,如有侵权留言

(1)读取 CSV 

pd.DataFrame.from_csv(“csv_file”)

 

pd.read_csv(“csv_file”)

(2)读取 Excel 

pd.read_excel("excel_file")

(3)将 DataFrame 直接写入 CSV 文件

如下采用逗号作为分隔符,且不带索引:

df.to_csv("data.csv", sep=",", index=False)

(4)基本的数据集特征信息

df.info()

(5)基本的数据集统计信息

print(df.describe())

(6) Print data frame in a table

将 DataFrame 输出到一张表:

print(tabulate(print_table, headers=headers))

当「print_table」是一个列表,其中列表元素还是新的列表,「headers」为表头字符串组成的列表。

(7)列出所有列的名字

df.columns

 

(8)删除缺失数据

df.dropna(axis=0, how='any')

返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴,选择 how=「all」会删除所有元素都是 NaN 的给定轴。

(9)替换缺失数据

df.replace(to_replace=None, value=None)

使用 value 值代替 DataFrame 中的 to_replace 值,其中 value 和 to_replace 都需要我们赋予不同的值。

(10)检查空值 NaN

pd.isnull(object)

检查缺失值,即数值数组中的 NaN 和目标数组中的 None/NaN。

(11)删除特征

df.drop('feature_variable_name', axis=1)

axis 选择 0 表示行,选择表示列。

(12)将目标类型转换为浮点型

pd.to_numeric(df["feature_name"], errors='coerce')

将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。

(13)将 DataFrame 转换为 NumPy 数组

df.as_matrix()

(14)取 DataFrame 的前面「n」行

df.head(n)

(15)通过特征名取数据

df.loc[feature_name]

 

DataFrame 操作

(16)对 DataFrame 使用函数

该函数将令 DataFrame 中「height」行的所有值乘上 2:

df["height"].apply(*lambda* height: 2 * height)

或:

def multiply(x):

 return x * 2

df["height"].apply(multiply)

(17)重命名行

下面代码会重命名 DataFrame 的第三行为「size」:

df.rename(columns = {df.columns[2]:'size'}, inplace=True)

(18)取某一行的唯一实体

下面代码将取「name」行的唯一实体:

df["name"].unique()

(19)访问子 DataFrame

以下代码将从 DataFrame 中抽取选定了的行「name」和「size」:

new_df = df[["name", "size"]]

(20)总结数据信息

# Sum of values in a data frame
df.sum()
# Lowest value of a data frame
df.min()
# Highest value
df.max()
# Index of the lowest value
df.idxmin()
# Index of the highest value
df.idxmax()
# Statistical summary of the data frame, with quartiles, median, etc.
df.describe()
# Average values
df.mean()
# Median values
df.median()
# Correlation between columns
df.corr()
# To get these values for only one column, just select it like this#
df["size"].median()

(21)给数据排序

df.sort_values(ascending = False)

(22)布尔型索引

以下代码将过滤名为「size」的行,并仅显示值等于 5 的行:

df[df["size"] == 5]

(23)选定特定的值

以下代码将选定「size」列、第一行的值:

df.loc([0], ['size'])
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值