信号与传输介质

一、信号与传输介质

1)什么是信号

我们进行网络通信,在线路中就需要传输数据,在线缆中传输的就是信号,那么什么是信号呢?

信息

数值、文字、图形、声音、图像及动画等表示人类社会传播的一切内容

数据

数据是事实或观察的结果,是对客观事物的逻辑归纳,比如声音、图像、文字

信号

信号是信息的载体,而信息是其内涵

2)信号的分类

模拟信号

模拟信号是指信号波形模拟着信息的变化而变化,其主要特征是幅度是连续的,可取无限多个值;而在时间上则可连续,也可不连续。

数字信号

数字信号是指不仅在时间上是离散的,而且在幅度上也是离散的,只能取有限个数值的信号。如电报信号,脉冲编码调制(PCM,Pulse Code Modulation)信号等都属于数字信号。二进制信号就是一种数字信号,它是由“1”和“0”这两位数字的不同的组合来表示不同的信息。

3)模拟信号和数字信号的优劣

①模拟信号

模拟信号的优点:

1、模拟信号最主要的优点是它有着极精确的分辨率,在情况处于特别理想的状态下,模拟信号的分辨率甚至趋于无穷大

2、模拟信号直观且更容易去实现

3、模拟信号因为没有存在量化误差,所以它能够准确的去描述物理量的真实值

4、模拟信号的处理方法要比数字信号更简单也更为方便

模拟信号的缺点:

1、模拟信号的信号比较弱,易受到杂讯的影响

2、传输距离近,只能进行短距离运输

3、抗干扰能力弱,在传输过程中容易受到各种噪声的干扰

4、模拟信号保密性差,通信内容容易遭到窃听

(此图为模拟信号受干扰后幅度效果和放大器放大后效果)

②数字信号

数字通信的优点:

1、可以远距离传输

2、高稳定性和高可靠性

3、多路信号同时传输时,不会产生交调失真

4、稳定性好,环境适应性高,易于维护与调节

5、易于实现大容量传输

6、图像信号质量高

数字通信的缺点:

  1. 算法复杂

(此图为数字信号受干扰后幅度效果和经过中继器稳定和放大后效果)


二、传输介质的连接

目前局域网使用的传输介质基本上都是双绞线,传输速率高,应用广泛,技术成熟,成本低廉

1)双绞线

总共8根双绞线,两两绞合在一起,常用的有5类、超5类和6类

双绞线搅合在一起是为了防止串烧,因为网线中传输的是弱点信号,铜线周围会产生磁场,磁场之间互相干扰影响电信号的传输,所以将线缆搅合以减小干扰

①双绞线的分类

屏蔽双绞线(铜线外包裹一层金属网膜):

用于电磁环境非常复杂的工业环境中

非屏蔽双绞线:

用于电磁干扰相对较弱的环境

②双绞线标准和分类

EIA/TIA-568—“商用建筑物电信布线标准”

Cat 5

主要用于100Base-T和10Base-T网络

Cat 5e

衰减更小,串扰更少,性能优于5类线

Cat 6

传输速率可达1Gbps

Cat 7

传输频率可达10Gbps

③双绞线的连接规范

线缆的连接方式

直通网线

交叉网线

全反线

2)光纤

光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。传输原理是“光的全反射”。

①光纤的特点

1.传输带宽高

由于可见光的频率范围极大,因此光纤传输系统可以使用的带宽范围很大

2.传输距离远

超过100km

3.抗干扰能力强

由绝缘体构成,不受电磁干扰;光信号不受磁场干扰

光脉冲在光纤中的传输是利用了光的全反射原理

②光纤的分类

单模光纤

多模光纤

高速度、长距离

低速度、短距离

成本高

成本低

端接较难

端接容易

窄芯线

宽芯线,聚光好,光源可采用激光或发光二极管

耗散极小

耗散大、低效


动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物野生动物,覆盖陆生哺乳动物家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场野生动物目标检测数据集 一、基础信息 数据集名称:农场野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值