数据结构和算法(十三)查找树

前言

      本章讨论一下树的查找,也就是查找树

方法

1.概念

对于查找树而言,我们最值得研究的就是二叉查找树。

二叉查找/搜索/排序树(BST)的定义:

或者是一棵空树,或者是具有下列性质的树:

  1. 若它的左子树不为空,则左子树所有结点的值都小于根节点的值
  2. 若它的右子树不为空,则右子树所有结点的值都大于根节点的值
  3. 它的左右子树也必须为二叉查找树

二叉查找树的示例:

上图就是二叉查找树,由定义可以知道其为二叉查找树。

当我们需要查找树中的某个结点值的时候,我们可以很方便的查找,因为其存在一定的规律。

下面的树也是二叉查找树:

同样也满足上面的条件。

2.平衡二叉树

我们引入一个新的概念,叫做二叉平衡树(AVL树)

平衡二叉树的定义:

或者是一棵空树,或者是具有下列性质的二叉查找树:

  1. 它的左右两个子树的高度差(平衡因子)不超过1
  2. 它的左右子树也必须为平衡二叉树

下面就是一个平衡二叉树:

下面则不是平衡二叉树,请大家思考原因:

 

平衡二叉树的目的在于减少二叉查找树的层次,提高查找的速度,其算法的时间复杂度为:log(n)

平衡二叉树有下列实现方式:AVL、红黑树、替罪羊树等

3.红黑树

红黑树是一种平衡二叉树,它具有下列性质:

  1. 每个结点或者是黑色或者时红色
  2. 根节点是黑色
  3. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
  4. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点

红黑树示例:

4.Java中的实例

在Java中,最明显的例子就是TreeSet和TreeMap

我们首先来看一下TreeMap

TreeMap采用红黑树的数据结构来实现,树节点Entry结构如下:

很明显,相当的熟悉吧!有key,有value,还有对应的左结点、右结点、父亲结点以及默认颜色黑色。

TreeMap的大致结构:

由于红黑树需要比较结点的大小来决定插入左边还是右边,所以其内置比较器comparator

同时还有红黑树的根结点root,以及树结点的数量size

默认的构造方法如下,其指定了一个空的比较器:

这个时候将采用自然比较,即根据key的类型选择比较器进行比较。

TreeMap的put()方法实现:这里希望大家可以自主摸索,探究红黑树的真谛。

public V put(K key, V value) {
        Entry<K,V> t = root;
        if (t == null) {
            compare(key, key); // type (and possibly null) check

            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        else {
            if (key == null)
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
                Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry<K,V> e = new Entry<>(key, value, parent);
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }

其查找方法也相应给出,争取啃透源码:

public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }
final Entry<K,V> getEntry(Object key) {
        // Offload comparator-based version for sake of performance
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

为什么先说TreeMap呢?因为TreeSet的底层实现就是TreeMap!!!

其添加方法实现如下:

实质上就是调用了TreeMap的put方法,依然采用红黑树来实现!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值