思路:手玩一下样例可以发现,如果gcd(a,b)==1(a>b),那么可以构造出1-b的所有出来,那么把所有都gcd起来,用最大的元素/gcd-n,那么就是还可以添加的元素,然后看奇偶就可以了
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int a[maxn];
int main()
{
int n;
scanf("%d",&n);
for(int i = 1;i<=n;i++)scanf("%d",&a[i]);
int res = 0;
for(int i = 1;i<=n;i++)res = __gcd(res,a[i]);
sort(a+1,a+1+n);
int l = a[n]/res-n;
if(l&1)printf("Alice\n");
else printf("Bob\n");
}
本文提供了一种解决CodeForces-347C问题的有效算法。通过对样例的手动分析,发现当两个数的最大公约数为1且其中一个大于另一个时,可以构造出特定范围内的所有数。通过将所有输入数的最大公约数进行计算,并使用最大元素与该最大公约数的比值减去输入数的数量,可以判断出剩余可添加的元素数量。最后根据该数量的奇偶性确定赢家。
493

被折叠的 条评论
为什么被折叠?



