BZOJ-1934-Vote善意的投票-SHOI2007

描述

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?


分析

  • 一个冲突对应一个割, 冲突数最少就是求最小割 --- 不懂
  • 感性的分析一下, 如果 s->x (x->t) 的边在最小割中, 表示x改变意愿. 如果 x->y 的边在最小割中, 表示 x 和 y 之间到最后还存在着冲突.

代码
#include 
    
    
     
     
#include 
     
     
      
      
#include 
      
      
       
       
#include 
       
       
        
        
#include 
        
        
          using namespace std; const int INF = 0x3f3f3f3f; const int maxn = 300 + 10; struct Edge { int from, to, cap, flow; }; struct Dinic { int n, m, s, t; vector 
         
           edges; vector 
          
            G[maxn]; bool vis[maxn]; int d[maxn], cur[maxn]; void init(int n, int s, int t) { this->n = n; this->s = s; this->t = t; } void AddEdge(int from, int to, int cap, int _cap=0) { edges.push_back((Edge){from, to, cap, 0}); edges.push_back((Edge){to, from, _cap, 0}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis, 0, sizeof(vis)); queue 
           
             Q; Q.push(s); vis[s] = 1; d[s] = 0; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow) { vis[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int DFS(int x, int a) { if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) { e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int Maxflow() { int flow = 0; while(BFS()) { memset(cur, 0, sizeof(cur)); flow += DFS(s, INF); } return flow; } }g; int main() { int n, m, s, t; scanf("%d %d", &n, &m); s = 0; t = n+1; g.init(n+2, s, t); for(int i = 1; i <= n; i++) { int x; scanf("%d", &x); if(x) g.AddEdge(s, i, 1); else g.AddEdge(i, t, 1); } for(int i = 0; i < m; i++) { int from, to; scanf("%d %d", &from, &to); g.AddEdge(from, to, 1, 1); } printf("%d\n", g.Maxflow()); return 0; } 
            
           
          
        
       
       
      
      
     
     
    
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值