描述
幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?
分析
- 一个冲突对应一个割, 冲突数最少就是求最小割 --- 不懂
- 感性的分析一下, 如果 s->x (x->t) 的边在最小割中, 表示x改变意愿. 如果 x->y 的边在最小割中, 表示 x 和 y 之间到最后还存在着冲突.
代码
#include
#include
#include
#include
#include
using namespace std; const int INF = 0x3f3f3f3f; const int maxn = 300 + 10; struct Edge { int from, to, cap, flow; }; struct Dinic { int n, m, s, t; vector
edges; vector
G[maxn]; bool vis[maxn]; int d[maxn], cur[maxn]; void init(int n, int s, int t) { this->n = n; this->s = s; this->t = t; } void AddEdge(int from, int to, int cap, int _cap=0) { edges.push_back((Edge){from, to, cap, 0}); edges.push_back((Edge){to, from, _cap, 0}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis, 0, sizeof(vis)); queue
Q; Q.push(s); vis[s] = 1; d[s] = 0; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow) { vis[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int DFS(int x, int a) { if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) { e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int Maxflow() { int flow = 0; while(BFS()) { memset(cur, 0, sizeof(cur)); flow += DFS(s, INF); } return flow; } }g; int main() { int n, m, s, t; scanf("%d %d", &n, &m); s = 0; t = n+1; g.init(n+2, s, t); for(int i = 1; i <= n; i++) { int x; scanf("%d", &x); if(x) g.AddEdge(s, i, 1); else g.AddEdge(i, t, 1); } for(int i = 0; i < m; i++) { int from, to; scanf("%d %d", &from, &to); g.AddEdge(from, to, 1, 1); } printf("%d\n", g.Maxflow()); return 0; }