【Boyd 凸优化】2. Convex sets 凸集 - 定义

本系列笔记(更新中): https://blog.csdn.net/qq_21149391/category_11891398.html

0. Preliminaries

1) 直线与线段

  • x 1 , x 2 ∈ R n x_1, x_2 \in \mathbb{R}^n x1,x2Rn 为两个不重叠的点, 所有满足下式的点构成一条穿过 x 1 , x 2 x_1, x_2 x1,x2 的直线 (line):
    y = θ x 1 + ( 1 − θ ) x 2 y=\theta x_1 +(1-\theta)x_2 y=θx1+(1θ)x2
    其中, θ ∈ R \theta \in \mathbb{R} θR 为任意实数.

  • 当上式中的 θ ∈ [ 0 , 1 ] \theta\in[0, 1] θ[0,1]时, 所有满足上式的点构成一条在 x 1 , x 2 x_1, x_2 x1,x2 中间的线段 (line segment).

2) 正定与半正定矩阵

  • 正定矩阵 positive definite matrix:
    矩阵 P P P 是正定的 iif 对任意非零向量 x x x x T P x > 0 x^T P x > 0 xTPx>0. 用符号表示为 P ≻ 0 P \succ 0 P0.
  • 半正定矩阵 positive semi-definite matrix:
    矩阵 P P P 是正定的 iif 对任意非零向量 x x x x T P x ≥ 0 x^T P x \geq 0 xTPx0. 用符号表示为 P ⪰ 0 P \succeq 0 P0.

iif 是 if and only if 的缩写. 意思为 “当且仅当”, 可用符号 “ ⇔ \Leftrightarrow ” 表示.

3) 奇异矩阵与非奇异矩阵

  • 奇异矩阵 singular matrix 是不可逆的方阵.
  • 非奇异矩阵 nonsingular matrix 是可逆的方阵.

4) 向量的范数 (norm)

对于任意 x , y ∈ R n , t ∈ R x, y\in\mathbb{R}^n, t\in \mathbb{R} x,yRn,tR, 向量的范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ 是满足下面三个条件的距离公式:

  1. ∣ ∣ x ∣ ∣ ≥ 0 ||x||\geq 0 ∣∣x∣∣0; ∣ ∣ x ∣ ∣ = 0 ⇔ x = 0 ||x||= 0 \Leftrightarrow x=0 ∣∣x∣∣=0x=0
  2. ∣ ∣ t x ∣ ∣ = ∣ t ∣ ∣ ∣ x ∣ ∣ ||tx||=|t| ||x|| ∣∣tx∣∣=t∣∣∣x∣∣
  3. Triangle inequality: ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y|| \leq ||x||+||y|| ∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣

常用范数:

  • ℓ 1 \ell_1 1 norm: ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||x||_1=\sum_{i=1}^n |x_i| ∣∣x1=i=1nxi, 每个元素的绝对值之和
  • ℓ 2 \ell_2 2 norm: ∣ ∣ x ∣ ∣ 2 = ( ∑ i = 1 n ∣ x i ∣ 2 ) 1 / 2 ||x||_2=(\sum_{i=1}^n |x_i|^2)^{1/2} ∣∣x2=(i=1nxi2)1/2, 每个元素的2次方之和再开根号
  • ℓ p \ell_p p norm: ∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p ||x||_p=(\sum_{i=1}^n |x_i|^p)^{1/p} ∣∣xp=(i=1nxip)1/p, 每个元素的p次方之和再开p次根号. p p p 为正整数
  • ℓ ∞ \ell_\infty norm: ∣ ∣ x ∣ ∣ ∞ = max ⁡ i = 1 , . . . , n { ∣ x i ∣ } ||x||_\infty=\max_{i=1,...,n}\{|x_i|\} ∣∣x=maxi=1,...,n{xi}, 绝对值最大的元素

1. Affine set 仿射集

1) Affine set (仿射集) 的定义:

x 1 , x 2 x_1, x_2 x1,x2 为集合 C ⊆ R n C\subseteq \mathbb{R}^n CRn 内的任意两点,若穿过 x 1 , x 2 x_1,x_2 x1,x2 的直线仍在 C C C 内,那么 C C C 为 affine set.

一些 affine set 的例子:

  • 一条直线 line
  • 一个平面 plane
  • 一个三维空间
  • 线性方程 { x ∣ A x = b } \{x|Ax=b\} {xAx=b} 的解集
    证明:
    x 1 , x 2 x_1,x_2 x1,x2 为上述解集内的两个点, 有 A x 1 = b , A x 2 = b Ax_1=b, Ax_2=b Ax1=b,Ax2=b. 对于任意 θ \theta θ, 可以算出:
    A [ θ x 1 + ( 1 − θ ) x 2 ] = θ A x 1 + ( 1 − θ ) A x 2 = θ b + ( 1 − θ ) = b A[\theta x_1 +(1-\theta)x_2]=\theta A x_1 + (1-\theta) A x_2=\theta b+(1-\theta)=b A[θx1+(1θ)x2]=θAx1+(1θ)Ax2=θb+(1θ)=b
    所以点 θ x 1 + ( 1 − θ ) x 2 \theta x_1 +(1-\theta)x_2 θx1+(1θ)x2 仍在解集内.

下面第四节的开头有 affine set, convex set, convex cone 的一些例子.

2) Affine combination (仿射组合) 的定义

x 1 , . . . , x k x_1,...,x_k x1,...,xk 的 affine combination 是 θ 1 x 1 + . . . + θ k x k \theta_1 x_1+...+\theta_k x_k θ1x1+...+θkxk,其中 θ 1 + . . . + θ k = 1 \theta_1+...+\theta_k =1 θ1+...+θk=1.

  • an affine set contains every affine combination of its points.

3) 扩展:

C C C 为 affine set 且 x 0 ∈ C x_0\in C x0C,那么 V = C − x 0 = { x − x 0 ∣ x ∈ C } V=C-x_0=\{x-x_0|x\in C\} V=Cx0={xx0xC}称为与 C C C相关的子空间 subspace. (相当于平移)
V V V 的分析:
V = { x − x 0 ∣ x ∈ C }          ∀ x 0 ∈ C = { x − x 0 ∣ A x = b } = { x − x 0 ∣ A x = A x 0 } = { x − x 0 ∣ A ( x − x 0 ) = 0 } = { y ∣ A y = 0 } \begin{align} V&=\{x-x_0|x\in C\} \;\;\;\; \forall x_0\in C \\ &=\{x-x_0|Ax=b\}\\ &=\{x-x_0|Ax=Ax_0\}\\ &=\{x-x_0|A(x-x_0)=0\}\\ &=\{y|Ay=0\} \end{align} V={xx0xC}x0C={xx0Ax=b}={xx0Ax=Ax0}={xx0A(xx0)=0}={yAy=0}
V V V A A A 的 null space.

4) Affine hull (仿射包) 的定义:

C ∈ R n C \in \mathbb{R}^n CRn为任意集合, C C C 中的点所构成的全部 affine combinations 的集合称为 C C C 的 affine hull,记为 aff   C \textbf{aff } C aff C
aff   C = { θ 1 x 1 + . . . + θ k x k ∣ x 1 , . . . , x k ∈ C , θ 1 + . . . + θ k = 1 } \textbf{aff } C=\{\theta_1 x_1+...+\theta_k x_k | x_1,...,x_k\in C, \theta_1+...+\theta_k=1\} aff C={θ1x1+...+θkxkx1,...,xkC,θ1+...+θk=1}
可以看出,集合 C C C 的 affine hull 是包含 C C C 的最小 affine set.
即, 若 S S S 是任意 affine set 且 C ⊆ S C\subseteq S CS,那么 aff   C ⊆ S \textbf{aff } C \subseteq S aff CS.

2. Convex sets 凸集

Convex sets 的相关概念定义与 Affine sets 的定义相似, 可以结合起来记.

1) Convex sets 的定义

定义1: x 1 , x 2 x_1, x_2 x1,x2 为集合 C ⊆ R n C\subseteq \mathbb{R}^n CRn 内的任意两点,若线段 x 1 x 2 x_1 x_2 x1x2仍在 C C C 内,那么 C C C 为 convex set.
定义2: x 1 , x 2 x_1, x_2 x1,x2 为集合 C ⊆ R n C\subseteq \mathbb{R}^n CRn 内的任意两点, θ ∈ [ 0 , 1 ] \theta\in [0,1] θ[0,1],若 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C,那么 C C C 为 convex set.

  • 从定义我们就能推出, 所有的 affine set 都是 convex set.

图1. 左:六边形,包括边,是凸集;中:非凸集合;右:正方形, 不包含边上的某些点,非凸(如果不含的点只在四个角上,为凸集)。

2) Convex combination (凸组合) 的定义

x 1 , . . . , x k x_1,...,x_k x1,...,xk 的 convex combination 是 θ 1 x 1 + . . . + θ k x k \theta_1 x_1+...+\theta_k x_k θ1x1+...+θkxk,其中 θ 1 + . . . + θ k = 1 \theta_1+...+\theta_k =1 θ1+...+θk=1,并且 θ i ∈ [ 0 , 1 ] \theta_i \in [0,1] θi[0,1] i = 1 , . . . , k i=1,...,k i=1,...,k.

与前面的 affine combination 区别为 θ \theta θ 的约束.

  • a set is convex iif it contains every convex combination of its points.

3) Convex hull (凸包) 的定义

C ∈ R n C \in \mathbb{R}^n CRn为任意集合, C C C 中的点所构成的全部 convex combinations 的集合称为 C C C 的 convex hull,记为 conv   C \textbf{conv } C conv C
conv   C = { θ 1 x 1 + . . . + θ k x k ∣ x i ∈ C , θ i ∈ [ 0 , 1 ] , i = 1 , . . . , k , θ 1 + . . . + θ k = 1 } \textbf{conv } C=\{\theta_1 x_1+...+\theta_k x_k|x_i\in C, \theta_i\in[0,1], i=1,...,k,\theta_1+...+\theta_k=1\} conv C={θ1x1+...+θkxkxiC,θi[0,1],i=1,...,k,θ1+...+θk=1}
集合 C C C 的 convex hull 是包含 C C C 的最小 convex set.
即, 若 B B B 是任意 convex set 且 C ⊆ B C \subseteq B CB,那么 conv   C ⊆ B \textbf{conv } C \subseteq B conv CB.

图2. R 2 \mathbb{R}^2 R2中的两个凸包,左图中的集合(15个点构成的集合)的凸包是一个五边形(阴影部分);右图阴影部分为图1中间的图形的凸包。

3. Convex cone 凸锥

1) Convex cones (凸锥) 的定义

  1. 如果对于任意 x ∈ C x\in C xC θ ≥ 0 \theta \geq 0 θ0,有 θ x ∈ C \theta x \in C θxC, 那么集合 C C C 被称为 cone 或 nonnegative homogeneous.
  2. 如果集合 C C C 既是 cone 又是 convex set, 那么 C C C 为 convex cone.
  3. 如果集合 C C C 为 convex cone, 那么对于任意 x 1 , x 2 ∈ C x_1,x_2\in C x1,x2C 和任意 θ 1 , θ 2 ≥ 0 \theta_1,\theta_2 \geq 0 θ1,θ20,有 θ 1 x 1 + θ 2 x 2 ∈ C \theta_1 x_1+\theta_2x_2 \in C θ1x1+θ2x2C

图3. 凸锥在几何上可以描述为:顶点为0且边缘穿过 x 1 x_1 x1 x 2 x_2 x2的二维饼图

2)Conic combination (锥组合) 的定义

x 1 , . . . , x k x_1,...,x_k x1,...,xk 的 conic combination (或称为 nonnegative linear combination) 是 θ 1 x 1 + . . . + θ k x k \theta_1 x_1+...+\theta_k x_k θ1x1+...+θkxk,其中 θ 1 , . . . , θ k ≥ 0 \theta_1,...,\theta_k \geq 0 θ1,...,θk0.

  • x i x_i xi 在 convex cone C C C 中,那么 x i x_i xi 的任意 conic combination 仍在 C C C内.
  • a set is a convex cone iif it contains all conic combinations of its elements.

3)Conic hull (锥包) 的定义

C ∈ R n C \in \mathbb{R}^n CRn为任意集合, C C C 中的点所构成的全部 conic combinations 的集合称为 C C C 的 conic hull:
{ θ 1 x 1 + . . . + θ k x k ∣ x i ∈ C , θ i ≥ 0 , i = 1 , . . . , k } \{\theta_1x_1+...+\theta_kx_k|x_i\in C, \theta_i\geq 0, i=1,...,k\} {θ1x1+...+θkxkxiC,θi0,i=1,...,k}

  • 集合 C C C 的 conic hull 是包含 C C C 的最小 convex cone.

图4. 图2中的两个集合的锥包(阴影部分);如果集合为两个点,且两点连线通过0点,它的锥包为一条通过这两点,顶点为0的射线

4. 一些重要的例子

  • 仿射集都是凸集。
  • 所有的空集 ∅ \varnothing ,所有只包含一个点的集合 { x 0 } \{x_0\} {x0},和整个 R n \mathbb{R}^n Rn空间都是 R n \mathbb{R}^n Rn 的仿射子集。
  • 所有的直线都是仿射集,如果直线通过 0 点,那么它是一个凸锥。
  • 所有的线段都是凸集,但不是仿射集。
  • 一条射线,形式为 { x 0 + θ v ∣ θ ≥ 0 } \{x_0 + θv | θ \geq 0\} {x0+θvθ0},其中 v ≠ 0 v \neq 0 v=0,是凸集,但不是仿射集。 如果 x 0 = 0 x_0=0 x0=0,则它是凸锥。
  • 所有的子空间都是仿射集,并且是凸锥。

4.1 Hyperplanes 超平面

定义:超平面是一个形式为 { x ∣ a T x = b } \{x|a^Tx=b\} {xaTx=b} 的集合,其中 a ∈ R n , a ≠ 0 , b ∈ R a\in \mathbb{R}^n, a \neq 0, b\in \mathbb{R} aRn,a=0,bR

  • 超平面是线性方程的非零解集
  • 向量 a a a 是超平面的 normal vector (法向量) , 常数 b b b 决定了超平面与原点的偏移量.
  • 超平面也可表示为 { x ∣ a T ( x − x 0 ) = 0 } \{x|a^T(x-x_0)=0\} {xaT(xx0)=0},其中 x 0 x_0 x0 是超平面中的任意一点
  • 也可表示为 { x ∣ a T ( x − x 0 ) = 0 } = x 0 + a ⊥ \{x|a^T(x-x_0)=0\}=x_0+a^\perp {xaT(xx0)=0}=x0+a,其中 a ⊥ a^\perp a 表示 a a a 的正交补集.

图5. R 2 \mathbb{R}^2 R2中的超平面,法向量为 a a a,点 x 0 x_0 x0在超平面内。在超平面中的任意一点 x x x x − x 0 x-x_0 xx0(图中加粗的向量)与 a a a正交。

4.2 Halfspaces 半空间

上述的超平面能够将 R n \mathbb{R}^n Rn 划分成两个 halfspaces,halfspace 是一个形式为 { x ∣ a T x ≤ b } \{x|a^Tx \leq b\} {xaTxb} 的集合,其中 a ≠ 0 a\neq 0 a=0,是一个线性不等式的非零解集.

A halfspace is a convex set,not a affine set:

图6. 超平面 a T x = b a^Tx=b aTx=b R n \mathbb{R}^n Rn划分成两个半空间。由 a T x ≥ b a^T x \geq b aTxb 确定的半空间(未加阴影)是沿 a a a方向延伸的。 由 a T x ≤ b a^T x \leq b aTxb 确定的半空间(阴影部分)在 − a -a a方向上延伸的。向量 a a a是这个半空间的外法线。

Halfspace 也可表示为 { x ∣ a T ( x − x 0 ) ≤ 0 } \{x|a^T(x-x_0)\leq0\} {xaT(xx0)0},其中 x 0 x_0 x0是对应的超平面上的任意点,即满足 a T x 0 = b a^T x_0 = b aTx0=b
对此的几何解释为:Halfspace 由 x 0 x_0 x0和任何与向量 a a a( a a a为向外的法向量)成钝角或直角的向量组成。如图7。

图7. 由 a T ( x − x 0 ) ≤ 0 a^T(x-x_0)\leq0 aT(xx0)0定义的半空间(阴影部分):向量 x 1 − x 0 x_1 - x_0 x1x0 a a a成锐角,因此 x 1 x_1 x1不在半空间中。 向量 x 2 − x 0 x_2 - x_0 x2x0 a a a 成钝角,在半空间中。

集合 { x ∣ a T x < b } \{x|a^Tx <b\} {xaTx<b}称为开半空间(open halfspace)。

4.3 Euclidean Balls 欧式球

R n \mathbb{R}^n Rn 空间中的 Euclidean balls (或简称为 balls) 的形式为:
B ( x c , r ) = { x ∣    ∣ ∣ x − x c ∣ ∣ 2 ≤ r } = { x ∣    ( x − x c ) T ( x − x c ) ≤ r 2 } B(x_c,r)=\{x|\; ||x-x_c||_2 \leq r\}=\{x|\; (x-x_c)^T(x-x_c)\leq r^2\} B(xc,r)={x∣∣xxc2r}={x(xxc)T(xxc)r2}
其中 r > 0 r>0 r>0 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 ∣∣2 ℓ 2 \ell_2 2 norm, x c x_c xc 是球的中心,标量 r r r 为半径.

  • 若上述公式内的 “ ≤ \leq ” 换为成 “ = = =”, 那么它表示球的表面 (sphere, 球面)
  • B ( x c , r ) B(x_c,r) B(xc,r) 由距中心 x c x_c xc 小于等于 r r r 的所有点组成,即球面 + 球的内部.
  • 球的另一种表示形式为:
    B ( x c , r ) = { x c + r u ∣    ∣ ∣ u ∣ ∣ 2 ≤ 1 } B(x_c,r)=\{x_c + ru|\; ||u||_2 \leq 1\} B(xc,r)={xc+ru∣∣u21}
  • 球是 convex set,证明:
    球内任取两点 x 1 , x 2 x_1, x_2 x1,x2,有 ∣ ∣ x 1 − x c ∣ ∣ 2 ≤ r ||x_1-x_c||_2 \leq r ∣∣x1xc2r ∣ ∣ x 2 − x c ∣ ∣ 2 ≤ r ||x_2-x_c||_2 \leq r ∣∣x2xc2r
    θ ∈ [ 0 , 1 ] \theta \in [0,1] θ[0,1],则根据 convex set 的定义,需证明线段 θ x 1 + ( 1 − θ ) x 2 \theta x_1 + (1-\theta) x_2 θx1+(1θ)x2 是否在球内:
    ∣ ∣ θ x 1 + ( 1 − θ ) x 2 − x c ∣ ∣ 2 = ∣ ∣ θ ( x 1 − x c ) + ( 1 − θ ) ( x 2 − x c ) ∣ ∣ 2 ≤ θ ∣ ∣ x 1 − x c ∣ ∣ 2 + ( 1 − θ ) ∣ ∣ x 2 − x c ∣ ∣ 2 ≤ r \begin{align} & ||\theta x_1 + (1-\theta) x_2 - x_c||_2 \\ =&||\theta(x_1-x_c) + (1-\theta) (x_2-x_c)||_2 \\ \leq &\theta||x_1-x_c||_2 + (1-\theta) ||x_2-x_c||_2\\ \leq &r \end{align} =∣∣θx1+(1θ)x2xc2∣∣θ(x1xc)+(1θ)(x2xc)2θ∣∣x1xc2+(1θ)∣∣x2xc2r

4.4 Ellipsoids 椭球

椭球也属于 convex set,其形式为:
ε = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \varepsilon = \{x|(x-x_c)^T P^{-1}(x-x_c)\leq 1\} ε={x(xxc)TP1(xxc)1}
其中 P P P 为对称且正定的矩阵.

  • 同样的, x c ∈ R n x_c\in \mathbb{R}^n xcRn 为椭球的中心, P P P 决定了椭球在每个方向上从 x c x_c xc 延伸多远, ε \varepsilon ε 的半轴长度由 P P P的特征值 λ i \sqrt{\lambda_i} λi 给出。
  • P = r 2 I P=r^2 I P=r2I 时,上述公式的椭球就是球。

图8. 二维空间中的椭球(也是椭圆), x c x_c xc为中心,两个线段为半轴。

4.5 Norm Balls 范数球

当将欧氏球公式中的二范数( ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 ∣∣2)换成 R n \mathbb{R}^n Rn上的任意范数( ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣),此时的集合称为 Norm Balls:
B ( x c , r ) = { x ∣    ∣ ∣ x − x c ∣ ∣ ≤ r } B(x_c,r)=\{x|\; ||x-x_c||\leq r\} B(xc,r)={x∣∣xxc∣∣r}

当球的中心为圆点时, 不同范数球在二维空间中的形状如下图:
在这里插入图片描述

  • 当范数为 ℓ 1 \ell_1 1 norm 时, 此时的球的边界对应于图中红色正方形
  • 当范数为 ℓ 2 \ell_2 2 norm 时, 此时的球的边界对应于图中黄色圆形, 最普遍的球
  • 当范数为 ℓ ∞ \ell_\infty norm 时, 此时的球的边界对应于图中蓝色正方形
  • 当范数为 ℓ p \ell_p p norm 且 p > 2 p > 2 p>2 时, 此时的球的边界在黄线与蓝线之间

4.6 Norm Cones 范数锥

范数锥的公式为:
C = { ( x , t ) ∣    ∣ ∣ x ∣ ∣ ≤ t } C=\{(x,t)|\; ||x||\leq t\} C={(x,t)∣∣x∣∣t}
其中, x ∈ R n x\in \mathbb{R}^n xRn t ∈ R t \in\mathbb{R} tR.

  • 注意, 集合 C ⊆ R n + 1 C \subseteq \mathbb{R}^{n+1} CRn+1 中的元素是 ( x , t ) (x,t) (x,t), 是由一个 n 维向量和一个标量组成的对儿.
  • 范数为 ℓ 2 \ell_2 2 的范数锥称为二阶锥 second-order cone, 如下图.

图9. R 2 \mathbb{R}^2 R2中的 second-order cone 二阶锥的边界。

4.7 Polyhedra 多面体

定义:多面体为有限个线性等式和不等式的解集:
P = { x ∣ A x ⪯ b , C x = d } \mathcal{P}=\{x|A x \preceq b, C x = d \} P={xAxb,Cx=d}

  • 此处的符号 ⪯ \preceq 用于向量之间的关系, 与正定/半正定符号不同, 表示: x ⪯ y ⇔ x i ≤ y i x \preceq y \Leftrightarrow x_i \leq y_i xyxiyi
  • 若令
    A = [ a 1 T . . . a m T ] , C = [ c 1 T . . . c p T ] A=\begin{bmatrix} a_1^T\\ ...\\ a_m^T\\ \end{bmatrix}, C=\begin{bmatrix} c_1^T\\ ...\\ c_p^T\\ \end{bmatrix} A= a1T...amT ,C= c1T...cpT
    那么定义中的约束可变为:
    a i T x ≤ b i , c j T x = d j      for       i = 1 , . . . , m ;      j = 1 , . . . , p a_i^T x\leq b_i, c_j^T x=d_j\;\; \text{for } \;\; i = 1,...,m;\;\; j=1,...,p aiTxbi,cjTx=djfor i=1,...,m;j=1,...,p
  • 根据上式可看出,多面体是 m m m 个半空间和 p p p 个超平面的 交集,其中 m , n m,n m,n 为非无穷的正数。
  • 仿射集(直线、子空间、超平面)、射线、线段、半空间都是多面体,多面体是凸集。

4.8 Simplexes 单纯形

1)定义

R n \mathbb{R}^n Rn 空间中选取 k + 1 k+1 k+1 个仿射独立 (affinely independent) 的点,即 v 1 − v 0 , . . . , v k − v 0 v_1 - v_0,...,v_k-v_0 v1v0,...,vkv0 是线性无关的,则与上述点相关的单纯形为:
C = conv   { v 0 , . . . , v k } = { θ 0 x 0 + . . . + θ k x k ∣ θ ⪰ 0 , 1 T θ = 1 } C=\textbf{conv } \{v_0,...,v_k\}=\{\theta_0 x_0+...+\theta_k x_k| \theta\succeq 0,\mathbf{1}^T\theta = 1\} C=conv {v0,...,vk}={θ0x0+...+θkxkθ0,1Tθ=1}
其中 conv   \textbf{conv } conv 表示凸包, 1 \mathbf{1} 1 表示所有元素均为 1 1 1 的向量. 该单纯形的仿射维数为 k k k,称为 k k k维单纯形.

图10. R 2 \mathbb{R}^2 R2空间中,左: k = 1 k=1 k=1,选取两个点得到的单纯形为一个线段;中: k = 2 k=2 k=2,选三个点,相关的单纯形为一个三角形(包括边和阴影部分);右: k = 3 k=3 k=3,选取四个点,但是在二维空间中无法找到三个线性无关的向量(图中的任一向量可由另两个向量的线性组合得到),故在二维空间中,无法找到四个或以上的点来构成一个单纯形。

如图1,同样的可以得出:一维空间中的单纯形是线段;二维空间中的单纯形是三角形;三维空间中的单纯形为四面体。

2)证明:单纯形是多面体的一种

C ∈ R n C\in\mathbb{R}^n CRn为单纯形,则根据单纯形的定义可得:
x ∈ C ⇔ x = θ 0 v 0 + . . . + θ k v k , 1 T θ = 1 , θ ⪰ 0 , v 1 − v 0 , . . . , v k − v 0 线性无关 (1) x\in C\Leftrightarrow x=\theta_0 v_0 + ...+ \theta_k v_k,\mathbf{1}^T\theta = 1,\theta\succeq 0,v_1 - v_0,...,v_k-v_0线性无关 \tag{1} xCx=θ0v0+...+θkvk,1Tθ=1,θ0,v1v0,...,vkv0线性无关(1)
为方便表示,我们定义 y y y B B B
y = [ θ 1 , . . . , θ k ] T ,      y ⪰ 0 ,      1 T y ≤ 1 y=[\theta_1,...,\theta_k]^T, \;\; y\succeq 0, \;\; \mathbf{1}^T y \leq 1 y=[θ1,...,θk]T,y0,1Ty1
B = [ v 1 − v 0 . . . v k − v 0 ] ∈ R n × k B=\begin{bmatrix} v_1-v_0 & ... & v_k-v_0 \end{bmatrix}\in \mathbb{R}^{n\times k} B=[v1v0...vkv0]Rn×k
则公式(1)可以表示为:
x ∈ C ⇔ x = v 0 + B y (2) x\in C \Leftrightarrow x=v_0 + By\tag{2} xCx=v0+By(2)
v 0 , . . . , v k v_0, ..., v_k v0,...,vk为仿射独立的,即 v 1 − v 0 , . . . , v k − v 0 v_1-v_0,...,v_k-v_0 v1v0,...,vkv0为线性无关的,可得 r a n k ( B ) = k {\rm rank}(B)=k rank(B)=k ( k ≤ n ) (k\leq n) (kn),因此存在一个非奇异矩阵 A = [ A 1 A 2 ] ∈ R n × n A=\begin{bmatrix}A_1 \\A_2\end{bmatrix}\in\mathbb{R}^{n\times n} A=[A1A2]Rn×n使得
A B = [ A 1 A 2 ] B = [ I 0 ] ,    ( I ∈ R k × k ) AB=\begin{bmatrix}A_1 \\A_2\end{bmatrix} B=\begin{bmatrix}I\\0\end{bmatrix},\;(I\in \mathbb{R}^{k\times k}) AB=[A1A2]B=[I0],(IRk×k)
对公式(2)左乘一个矩阵 A A A
A x = A v 0 + A B y [ A 1 A 2 ] x = [ A 1 A 2 ] v 0 + [ I 0 ] y \begin{aligned} Ax &= Av_0 + ABy\\ \begin{bmatrix}A_1 \\A_2\end{bmatrix}x &=\begin{bmatrix}A_1 \\A_2\end{bmatrix}v_0+\begin{bmatrix}I\\0\end{bmatrix}y \end{aligned} Ax[A1A2]x=Av0+ABy=[A1A2]v0+[I0]y

{ A 1 x = A 1 v 0 + y A 2 x = A 2 v 0 \left\{\begin{matrix} A_1 x=A_1 v_0 + y\\ A_2 x=A_2 v_0 \end{matrix}\right. {A1x=A1v0+yA2x=A2v0
因此 x ∈ C x\in C xC 当且仅当 A 2 x = A 2 v 0 A_2 x= A_2 v_0 A2x=A2v0且向量 y = A 1 x − A 1 v 0 y=A_1x - A_1 v_0 y=A1xA1v0满足 y ⪰ 0 ,    1 T y ≤ 1 y\succeq 0, \; \mathbf{1}^T y \leq 1 y0,1Ty1。换句话说, x ∈ C x\in C xC 当且仅当:
A 2 x = A 2 v 0 ,        A 1 x ⪰ A 1 v 0 ,        1 T A 1 x ≤ 1 + 1 T A 1 v 0 A_2 x = A_2 v_0, \;\;\; A_1 x \succeq A_1 v_0, \;\;\; \mathbf{1}^TA_1x \leq 1+ \mathbf{1}^T A_1 v_0 A2x=A2v0,A1xA1v0,1TA1x1+1TA1v0
即单纯形为两个不等式和一个等式描述的集合,这也就是多面体的定义。

4.9 The Positive Semidefinite Cone 半正定锥

1) 定义

  • S n \textbf{S}^n Sn 为全部对称矩阵的集合:
    S n = { X ∈ R n × n ∣ X = X T } \mathbf{S}^n = \{X\in \mathbb{R}^{n\times n}|X=X^T\} Sn={XRn×nX=XT}
    这是一个维度为 n ( n + 1 ) / 2 n(n + 1)/2 n(n+1)/2 的向量空间。
    是凸锥,所以也是凸集。
  • S + n \mathbf{S}^n_+ S+n 为半正定锥, 是全部对称且半正定的矩阵的集合:
    S + n = { X ∈ S n ∣ X ⪰ 0 } \mathbf{S}^n_+ = \{X\in \textbf{S}^n|X\succeq 0\} S+n={XSnX0}
    是凸锥,所以也是凸集。
  • S + + n \mathbf{S}^n_{++} S++n 为全部对称且正定的矩阵的集合:
    S + + n = { X ∈ S n ∣ X ≻ 0 } \mathbf{S}^n_{++} = \{X\in \mathbf{S}^n|X\succ 0\} S++n={XSnX0}
    是凸集,不是凸锥。

2)证明: S + n \mathbf{S}^n_+ S+n是凸锥

即(根据凸锥的定义)任取 θ 1 , θ 2 ≥ 0 \theta_1, \theta_2 \geq 0 θ1,θ20 A , B ∈ S + n A, B \in \mathbf{S}^n_+ A,BS+n,证明 θ 1 A + θ 2 B ∈ S + n \theta_1 A+\theta_2 B\in \mathbf{S}^n_+ θ1A+θ2BS+n
根据半正定矩阵的性质有:
∀ x ∈ R n ,    x T A x ≥ 0 ,    x T B x ≥ 0 \forall x\in \mathbb{R}^n,\; x^T A x \geq 0,\; x^T B x \geq 0 xRn,xTAx0,xTBx0
因此:
x T ( θ 1 A + θ 2 B ) x =    θ 1 x T A x + θ 2 x T B x ≥    0 \begin{aligned} &x^T(\theta_1 A+\theta_2 B)x\\ =&\;\theta_1x^T A x + \theta_2 x^T B x\\ \geq & \; 0 \end{aligned} =xT(θ1A+θ2B)xθ1xTAx+θ2xTBx0
θ 1 A + θ 2 B ∈ S + n \theta_1 A+\theta_2 B\in \textbf{S}^n_+ θ1A+θ2BS+n,证明完毕。

3)不同空间中的特征

n=1:即一维空间中, S 1 = R \textbf{S}^1 = \textbf{R} S1=R(实数集); S + 1 = R + \textbf{S}^1_+ = \textbf{R}_+ S+1=R+(非负实数集); S + + 1 = R + + \textbf{S}^1_{++} = \textbf{R}_{++} S++1=R++(正实数集)。
n=2:即二维空间中,如图2,我们有:
X = [ x y y z ] ∈ S + 2 ⇔ x ≥ 0 , z ≥ 0 , x z ≥ y 2 X = \begin{bmatrix}x & y\\ y & z\end{bmatrix}\in \textbf{S}^2_+ \Leftrightarrow x \geq 0, z \geq 0, xz \geq y^2 X=[xyyz]S+2x0,z0,xzy2

图11. 二维空间中半正定锥的边界,在 R 3 \mathbb{R}^3 R3中绘制为 ( x , y , z ) (x, y, z) (x,y,z)

  • 11
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Manigoldo_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值