PyTorch提供了两种层面的功能:
- 使用强大GPU进行Tensor计算加速(Tensor的使用方式跟numpy非常相似,唯一区别就是Tensor能够使用gpu进行加速运算)
- 能够提供最大灵活性和速度的深度学习研究平台
Pytorch作为Python优先的动态图框架,有以下特点:
- Python优先 PyTorch不是简单的在整体C++框架上绑定Python,它渗入构建在Python之上,使用者可以像使用numpy/scipy/scikit-learn等库那样使用Pytorch,也可以用自己喜欢的库和包在Pytorch中编写新的神经网络层,尽量不用自己再去造轮子。
- 命令式体验 Pytorch直观、线性的设计思路易于使用,在接收到错误代码和stack trace时,可以非常轻松的指向代码定义的确切位置,不用浪费时间在错误或者指向不明上。
- 快速 Pytorch集成了各种加速库,如Intel MKL、NVIDIA的CuDNN和NCLL来优化加速。
- 安装 易于安装。比如 conda install pytorch torchvision -c pytorch 或者 使用pip安装。