set无序排序且不重复,是可变的,有add(),remove()等方法。既然是可变的,所以它不存在
哈希值。基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交集),
difference(差集)和sysmmetric difference(对称差集)等数学运算.
sets 支持 x in set, len(set),和 for x in set。作为一个无序的集合,sets不记录元素位置或者
插入点。因此,sets不支持 indexing, 或其它类序列的操作。frozenset是冻结的集合,它是不可变的,存在
哈希值,好处是它可以作为字典的key,也可以作为其它集合的元素。缺点是一旦创建 便不能更改,没有
add,remove方法。
1.2 集合的创建
set()和 frozenset()工厂函数分别用来生成可变和不可变的集合。如果不提供任何参数,默认会生成空
集合。如果提供一个参数,则该参数必须是可迭代的,即,一个序列,或迭代器,或支持迭代的一个对象,例
如:一个列表或一个字典。
>>> s=set('cheeseshop') 使用工厂方法创建
>>> s
{'h','c','o','s','e','p'}>>>type(s)<type'set'>>>> s={'chessseshop','bookshop'}
直接创建,类似于list的[]和dict的{},不同于dict的是其中的值,set会将其中的元素转换为元组
>>> s
{'bookshop','chessseshop'}>>>type(s)<type'set'>
不可变集合创建:
>>> t=frozenset('bookshop')>>> t
frozenset({'h','o','s','b','p','k'})
1.3 更新可变集合
>>> s.add('z')#添加>>> s
set(['c','e','h','o','p','s','z'])>>> s.update('pypi')#添加>>> s
set(['c','e','i','h','o','p','s','y','z'])>>> s.remove('z')#删除>>> s
set(['c','e','i','h','o','p','s','y'])>>> s -=set('pypi')#删除>>> s
set(['c','e','h','o','s'])>>>del s #删除集合
只有可变集合能被修改。试图修改不可变集合会引发异常。
>>> t.add('z')
Traceback (most recent call last):
File "<stdin>", line 1,in ?
AttributeError:'frozenset'object has no attribute 'add'
1.4 成员关系 (in, not in)
>>>'k'in s
False>>>'k'in t
True>>>'c'notin t
True
1.5 集合等价/不等价
>>> s == t
False>>> s != t
True>>> u =frozenset(s)>>> s == u
True>>>set('posh')==set('shop')True
>>> s=set('cheeseshop')>>> s
{'h','c','o','s','e','p'}>>>for i in s:print(i)
h
c
o
s
e
p
>>> t=frozenset('bookshop')>>> t
frozenset({'h','o','s','b','p','k'})>>>for i in t:print(i)
h
o
s
b
p
k
1.8 集合类型操作符(所有的集合类型)
1.联合(|)
两个集合的联合是一个新集合,该集合中的每个元素都至少是其中一个集合的成员,即,属于两个集合其中
之一的成员。联合符号有一个等价的方法,union().>>> s | t
set(['c','b','e','h','k','o','p','s'])2.交集(&)
你可以把交集操作比做集合的 AND(或合取)操作。两个集合的交集是一个新集合,该集合中的每个元素同时
是两个集合中的成员,即,属于两个集合的成员。交集符号有一个等价的方法,intersection()>>> s & t
set(['h','s','o','p']3.差补/相对补集( – )
两个集合(s 和 t)的差补或相对补集是指一个集合 C,该集合中的元素,只属于集合 s,而不属于集合 t。
差符号有一个等价的方法,difference().>>> s - t
set(['c','e'])4.对称差分(^)
和其他的布尔集合操作相似, 对称差分是集合的 XOR(又称"异或 ").两个集合(s 和 t)的对称差分是指
另外一个集合 C,该集合中的元素,只能是属于集合 s 或者集合 t的成员,不能同时属于两个集合。对称差分
有一个等价的方法,symmetric_difference().>>> s ^ t
set(['k','b','e','c'])5.混合集合类型操作
上面的示例中,左边的 s 是可变集合,而右边的 t 是一个不可变集合. 注意上面使用集合操作运算符
所产生的仍然是可变集合,但是如果左右操作数的顺序反过来,结果就不一样了:>>> t | s
frozenset(['c','b','e','h','k','o','p','s'])>>> t ^ s
frozenset(['c','b','e','k'])>>> t - s frozenset(['k','b'])
如果左右两个操作数的类型相同, 既都是可变集合或不可变集合, 则所产生的结果类型是相同的,但如果
左右两个操作数的类型不相同(左操作数是 set,右操作数是 frozenset,或相反情况),则所产生的结果类型
与左操作数的类型相同。
1.9 可变集合类型的方法
s.update(t) 用 t 中的元素修改 s, 即,s 现在包含 s 或 t 的成员
s.intersection_update(t) s 中的成员是共同属于 s 和 t 的元素。
s.difference_update(t) s 中的成员是属于 s 但不包含在 t 中的元素
s.symmetric_difference_update(t) s 中的成员更新为那些包含在 s 或 t 中,但不 是 s
和 t 共有的元素
s.add(obj) 在集合 s 中添加对象 obj
s.remove(obj) 从集合 s 中删除对象 obj;如果 obj 不是集合 s 中的元素
(obj notin s),将引发 KeyError 错误
s.discard(obj) 如果 obj 是集合 s 中的元素,从集合 s 中删除对象 obj;
s.pop() 删除集合 s 中的任意一个对象,并返回它
s.clear() 删除集合 s 中的所有元素
1.10 集合类型操作符、函数和方法
函数/方法名 等价运算符 说明
所有集合类型:
len(s) 集合基数: 集合 s 中元素的个数
set([obj]) 可变集合工厂函数; obj 必须是支持迭代的,由 obj 中的元素创建集合,否则创建一个空
集合
frozenset([obj]) 不可变集合工厂函数; 执行方式和 set()方法相同,但它返回的是不可变集合
obj in s 成员测试:obj 是 s 中的一个元素吗?
obj notin s 非成员测试:obj 不是 s 中的一个元素吗?
s == t 等价测试: 测试 s 和 t 是否具有相同的元素?
s != t 不等价测试: 与==相反
s < t (严格意义上)子集测试; s != t 而且 s 中 所 有的元素都是 t 的成员
s.issubset(t) s <= t 子集测试(允许不严格意义上的子集): s 中所有的元素都是 t 的成员
s > t (严格意义上)超集测试: s != t 而且 t 中所有的元素都是 s 的成员
s.issuperset(t) s >= t 超集测试(允许不严格意义上的超集): t 中所有的元素都是 s 的成员
s.union(t) s | t 合并操作: s 或 t 中的元素
s.intersec- tion(t) s & t 交集操作: s 和 t 中的元素
s.difference(t) s - t 差分操作: s 中的元素,而不是 t 中的元素
s.symmetric_difference(t) s ^ t 对称差分操作:s 或 t 中的元素,但不是 s 和 t 共有的元素
s.copy() 复制操作:返回 s 的(浅复制)副本
仅用于可变集合:
s.update(t) s |= t (Union) 修改操作: 将 t 中的成员添加 s
s.intersection_update(t) s &= t 交集修改操作: s 中仅包括 s 和 t 中共有的成员
s.difference_update(t) s -= t 差修改操作: s 中包括仅属于 s 但不属于 t 的成员
s.symmetric_difference_update(t) s ^= t 对称差分修改操作: s 中包括仅属于 s 或仅属于 t 的成员
s.add(obj) 加操作: 将 obj 添加到 s
s.remove(obj) 删除操作: 将 obj 从 s 中删除;如果 s 中不存在obj,将引发 KeyError
s.discard(obj) 丢弃操作: remove() 的 友 好 版 本 - 如果 s 中存在 obj,从 s 中删除
s.pop() Pop 操作: 移除并返回 s 中的任意一个元素
s.clear() 清除操作: 移除 s 中的所有元素
可使用函数 dict从其他映射(如其他字典)或键值对序列创建字典。
>>> items =[('name','Gumby'),('age',42)]>>> d =dict(items)>>> d
{'age':42,'name':'Gumby'}>>> d['name']'Gumby'
还可使用关键字实参来调用这个函数,如下所示:
>>> d =dict(name='Gumby', age=42)>>> d
{'age':42,'name':'Gumby'}'''
尽管这可能是函数 dict 最常见的用法,但也可使用一个映射实参来调用它,这将创建一个字典,其中包含指定映射中的所有项。
像函数 list 、 tuple 和 str 一样,如果调用这个函数时没有提供任何实参,将返回一个空字典。从映射创建字典时,如果该映射
也是字典(毕竟字典是Python中唯一的内置映射类型),可不使用函数 dict ,而是使用字典方法 copy ,这将在后面介绍。
'''
2.2.2 基本字典操作
字典的基本行为在很多方面都类似于序列。
len(d) 返回字典 d 包含的项(键值对)数。
d[k] 返回与键 k 相关联的值。
d[k] = v 将值 v 关联到键 k 。
del d[k] 删除键为 k 的项。
k in d 检查字典 d 是否包含键为 k 的项。
虽然字典和列表有多个相同之处,但也有一些重要的不同之处。
键的类型:字典中的键可以是整数,但并非必须是整数。字典中的键可以是任何不可变的类型,如浮点数(实数)、字符串或元组。
自动添加:即便是字典中原本没有的键,也可以给它赋值,这将在字典中创建一个新项。然而,如果不使用 append 或其他类似的
方法,就不能给列表中没有的元素赋值。
成员资格:表达式 k in d (其中 d 是一个字典)查找的是键而不是值,而表达式 v in l (其中 l 是一个列表)查找的是值而不是
索引。这看似不太一致,但你习惯后就会觉得相当自然。毕竟如果字典包含指定的键,检查相应的值就很容易。
前述第一点(键可以是任何不可变的类型)是字典的主要优点。第二点也很重要,下面的示例说明了这种差别:
>>> x =[]>>> x[42]='Foobar'
Traceback (most recent call last):
File "<stdin>", line 1,in ?
IndexError:list assignment index out of range>>> x ={}>>> x[42]='Foobar'>>> x
{42:'Foobar'}'''
首先,我尝试将字符串 'Foobar' 赋给一个空列表中索引为42的元素。这显然不可能,因为没有这样的元素。要让这种操作可行,
初始化 x 时,必须使用 [None] * 43 之类的代码,而不能使用 [] 。然而,接下来的尝试完全可行。这次我将 'Foobar' 赋给一个
空字典的键42;如你所见,这样做一点问题都没有:在这个字典中添加了一个新项,我得逞了。
'''
例1:字典示例
# 一个简单的数据库# 一个将人名用作键的字典。每个人都用一个字典表示,# 字典包含键'phone'和'addr',它们分别与电话号码和地址相关联
people ={'Alice':{'phone':'2341','addr':'Foo drive 23'},'Beth':{'phone':'9102','addr':'Bar street 42'},'Cecil':{'phone':'3158','addr':'Baz avenue 90'}}# 电话号码和地址的描述性标签,供打印输出时使用
labels ={'phone':'phone number','addr':'address'}
name =input('Name: ')# 要查找电话号码还是地址?
request =input('Phone number (p) or address (a)? ')# 使用正确的键:if request =='p': key ='phone'if request =='a': key ='addr'# 仅当名字是字典包含的键时才打印信息:if name in people:print("{}'s {} is {}.".format(name, labels[key], people[name][key]))
这个程序的运行情况类似于下面这样:
Name: Beth
Phone number (p)or address (a)? p
Beth's phone number is9102.
2.2.3 字典方法
与其他内置类型一样,字典也有方法。字典的方法很有用,但其使用频率可能没有列表和字符串的方法那样高。你可大致浏览,
了解字典提供了哪些方法,等需要使用特定方法时再回过头来详细研究其工作原理。
1. clear
方法 clear 删除所有的字典项,这种操作是就地执行的(就像 list.sort 一样),因此什么都不返回(或者说返回 None )。
>>> d ={}>>> d['name']='Gumby'>>> d['age']=42>>> d
{'age':42,'name':'Gumby'}>>> returned_value = d.clear()>>> d
{}>>>print(returned_value)None
这为何很有用呢?我们来看两个场景。下面是第一个场景:
>>> x ={}>>> y = x
>>> x['key']='value'>>> y
{'key':'value'}>>> x ={}>>> y
{'key':'value'}
下面是第二个场景:
>>> x ={}>>> y = x
>>> x['key']='value'>>> y
{'key':'value'}>>> x.clear()>>> y
{}
在这两个场景中, x 和 y 最初都指向同一个字典。在第一个场景中,我通过将一个空字典赋给 x 来“清空”它。这对 y 没有任何影响,
它依然指向原来的字典。这种行为可能正是你想要的,但要删除原来字典的所有元素,必须使用 clear 。如果这样做, y 也将是空的,如第
二个场景所示。
2. copy
方法 copy 返回一个新字典,其包含的键值对与原来的字典相同(这个方法执行的是浅复制,因为值本身是原件,而非副本)。
>>> x ={'username':'admin','machines':['foo','bar','baz']}>>> y = x.copy()>>> y['username']='mlh'>>> y['machines'].remove('bar')>>> y
{'username':'mlh','machines':['foo','baz']}>>> x
{'username':'admin','machines':['foo','baz']}
如你所见,当替换副本中的值时,原件不受影响。然而,如果修改副本中的值(就地修改而不是替换),原件也将发生变化,因为原件
指向的也是被修改的值(如这个示例中的 'machines'列表所示)。
为避免这种问题,一种办法是执行深复制,即同时复制值及其包含的所有值,等等。为此,可使用模块 copy 中的函数 deepcopy 。
>>>from copy import deepcopy
>>> d ={}>>> d['names']=['Alfred','Bertrand']>>> c = d.copy()>>> dc = deepcopy(d)>>> d['names'].append('Clive')>>> c
{'names':['Alfred','Bertrand','Clive']}>>> dc
{'names':['Alfred','Bertrand']}3. fromkeys
方法 fromkeys 创建一个新字典,其中包含指定的键,且每个键对应的值都是 None 。
>>>{}.fromkeys(['name','age']){'age':None,'name':None}
这个示例首先创建了一个空字典,再对其调用方法 fromkeys 来创建另一个字典,这显得有点多余。你可以不这样做,而是直接对 dict>>>dict.fromkeys(['name','age']){'age':None,'name':None}
如果你不想使用默认值 None ,可提供特定的值。
>>>dict.fromkeys(['name','age'],'(unknown)'){'age':'(unknown)','name':'(unknown)'}4. get
方法 get 为访问字典项提供了宽松的环境。通常,如果你试图访问字典中没有的项,将引发错误。
>>> d ={}>>>print(d['name'])
Traceback (most recent call last):
File "<stdin>", line 1,in ?
KeyError:'name'
而使用 get 不会这样:
>>>print(d.get('name'))None
如你所见,使用 get 来访问不存在的键时,没有引发异常,而是返回 None 。你可指定“默认”
值,这样将返回你指定的值而不是 None 。
>>> d.get('name','N/A')'N/A'
如果字典包含指定的键, get 的作用将与普通字典查找相同。
>>> d['name']='Eric'>>> d.get('name')'Eric'
例2:
people ={'Alice':{'phone':'2341','addr':'Foo drive 23'},'Beth':{'phone':'9102','addr':'Bar street 42'},'Cecil':{'phone':'3158','addr':'Baz avenue 90'}}# 一个使用get()的简单数据库# 在这里插入代码清单4-1中的数据库(字典people)
labels ={'phone':'phone number','addr':'address'}
name =input('Name: ')# 要查找电话号码还是地址?
request =input('Phone number (p) or address (a)? ')# 使用正确的键:
key = request # 如果request既不是'p'也不是'a'if request =='p': key ='phone'if request =='a': key ='addr'# 使用get提供默认值
person = people.get(name,{})
label = labels.get(key, key)
result = person.get(key,'not available')print("{}'s {} is {}.".format(name, label, result))
下面是这个程序的运行情况。注意到 get 提高了灵活性,让程序在用户输入的值出乎意料时也能妥善处理。
Name: Gumby
Phone number (p)or address (a)? batting average
Gumby's batting average isnot available.5. items
方法 items 返回一个包含所有字典项的列表,其中每个元素都为 (key, value) 的形式。字典项在列表中的排列顺序不确定。
>>> d ={'title':'Python Web Site','url':'http://www.python.org','spam':0}>>> d.items()
dict_items([('title','Python Web Site'),('url','http://www.python.org'),('spam',0)])
返回值属于一种名为字典视图的特殊类型
>>> it = d.items()>>>len(it)3>>>('spam',0)in it
True
视图的一个优点是不复制,它们始终是底层字典的反映,即便你修改了底层字典亦如此。
>>> d['spam']=1>>>('spam',0)in it
False>>> d['spam']=0>>>('spam',0)in it
True
然而,如果你要将字典项复制到列表中(在较旧的Python版本中,方法 items 就是这样做的),可自己动手做。
>>>list(d.items())[('spam',0),('title','Python Web Site'),('url','http://www.python.org')]6. keys
方法 keys 返回一个字典视图,其中包含指定字典中的键。
7. pop
方法 pop 可用于获取与指定键相关联的值,并将该键值对从字典中删除。
>>> d ={'x':1,'y':2}>>> d.pop('x')1>>> d
{'y':2}8. popitem
方法 popitem 类似于 list.pop ,但 list.pop 弹出列表中的最后一个元素,而 popitem 随机地弹出一个字典项,因为字典项的顺序
是不确定的,没有“最后一个元素”的概念。如果你要以高效地方式逐个删除并处理所有字典项,这可能很有用,因为这样无需先获取键列表。
>>> d ={'url':'http://www.python.org','spam':0,'title':'Python Web Site'}>>> d.popitem()('url','http://www.python.org')>>> d
{'spam':0,'title':'Python Web Site'}
虽然 popitem 类似于列表方法 pop ,但字典没有与 append (它在列表末尾添加一个元素)对应的方法。这是因为字典是无序的,
类似的方法毫无意义。
9. setdefault
方法 setdefault 有点像 get ,因为它也获取与指定键相关联的值,但除此之外, setdefault还在字典不包含指定的键时,在字典
中添加指定的键值对。
>>> d ={}>>> d.setdefault('name','N/A')'N/A'>>> d
{'name':'N/A'}>>> d['name']='Gumby'>>> d.setdefault('name','N/A')'Gumby'>>> d
{'name':'Gumby'}
如你所见,指定的键不存在时, setdefault 返回指定的值并相应地更新字典。如果指定的键存在,就返回其值,并保持字典不变。
与 get 一样,值是可选的;如果没有指定,默认为 None 。
>>> d ={}>>>print(d.setdefault('name'))None>>> d
{'name':None}
如你所见,指定的键不存在时, setdefault 返回指定的值并相应地更新字典。如果指定的键存在,就返回其值,并保持字典不变。
与 get 一样,值是可选的;如果没有指定,默认为 None 。
>>> d ={}>>>print(d.setdefault('name'))None>>> d
{'name':None}10. update
方法 update 使用一个字典中的项来更新另一个字典。
>>> d ={...'title':'Python Web Site',...'url':'http://www.python.org',...'changed':'Mar 14 22:09:15 MET 2016'...}>>> x ={'title':'Python Language Website'}>>> d.update(x)>>> d
{'url':'http://www.python.org','changed':'Mar 14 22:09:15 MET 2016','title':'Python Language Website'}
对于通过参数提供的字典,将其项添加到当前字典中。如果当前字典包含键相同的项,就替换它。
可像调用本章前面讨论的函数 dict (类型构造函数)那样调用方法 update 。这意味着调用update 时,可向它提供一个映射、
一个由键值对组成的序列(或其他可迭代对象)或关键字参数。
11. values
方法 values 返回一个由字典中的值组成的字典视图。不同于方法 keys ,方法 values 返回的视图可能包含重复的值。
>>> d ={}>>> d[1]=1>>> d[2]=2>>> d[3]=3>>> d[4]=1>>> d.values()
dict_values([1,2,3,1])
2.3 python字典遍历的集中方法
1. 遍历key值
>>> a
{'a':'1','b':'2','c':'3'}>>>for key in a:print(key+':'+a[key])
a:1
b:2
c:3>>>for key in a.keys():print(key+':'+a[key])
a:1
b:2
c:3
在使用上,for key in a和 for key in a.keys():完全等价。
2. 遍历value值
>>>for value in a.values():print(value)1233. 遍历字典项
>>>for kv in a.items():print(kv)('a','1')('b','2')('c','3')4. 遍历字典键值
>>>for key,value in a.items():print(key+':'+value)
a:1
b:2
c:3>>>for(key,value)in a.items():print(key+':'+value)
a:1
b:2
c:3
在使用上for key,value in a.items()与for(key,value)in a.items()完全等价
3. Python的各种推导式
推导式comprehensions(又称解析式),是Python的一种独有特性。推导式是可以从一个数据序列构建另一个新的数据序列的结构体。
共有三种推导,在Python2和3中都有支持:
- 列表(list)推导式
- 字典(dict)推导式
- 集合(set)推导式
一、列表推导式
1、使用[]生成list
基本格式
[表达式 for 变量 in 列表] 或者 [表达式 for 变量 in 列表 if 条件]
例1: 过滤掉长度小于3的字符串列表,并将剩下的转换成大写字母
>>> names =['Bob','Tom','alice','Jerry','Wendy','Smith']
>>>[name.upper()for name in names iflen(name)>3]
['ALICE','JERRY','WENDY','SMITH']
生成间隔5分钟的时间列表序列:
["%02d:%02d"%(h,m)for h inrange(0,24)for m inrange(0,60,5)]
例2: 求(x,y)其中x是0-5之间的偶数,y是0-5之间的奇数组成的元祖列表
>>>[(x,y)for x inrange(5)if x%2==0for y inrange(5)if y %2==1]
[(0,1),(0,3),(2,1),(2,3),(4,1),(4,3)]
例3: 求M中3,6,9组成的列表
>>> M =[[1,2,3],[4,5,6],[7,8,9]]>>> M
[[1,2,3],[4,5,6],[7,8,9]]
>>>[row[2]for row in M]
[3,6,9]
#或者用下面的方式
>>>[M[row][2]for row in(0,1,2)][3,6,9]
例4: 求M中斜线1,5,9组成的列表
>>> M
[[1,2,3],[4,5,6],[7,8,9]]
>>>[ M[i][i]for i inrange(len(M))] 即打印 M[0][0],M[1][1],M[2][2]
[1,5,9]
例5: 求M,N中矩阵和元素的乘积
>>> M =[[1,2,3],[4,5,6],[7,8,9]]>>> N =[[2,2,2],[3,3,3],[4,4,4]]
>>>[M[row][col]*N[row][col]for row inrange(3)for col inrange(3)]
[2,4,6,12,15,18,28,32,36]
>>>[[M[row][col]*N[row][col]for col inrange(3)]for row inrange(3)]
[[2,4,6],[12,15,18],[28,32,36]]
>>>[[M[row][col]*N[row][col]for row inrange(3)]for col inrange(3)]
[[2,12,28],[4,15,32],[6,18,36]]
例5: 讲字典中age键,按照条件赋新值
>>> bob
{'pay':3000,'job':'dev','age':42,'name':'Bob Smith'}
>>> sue
{'pay':4000,'job':'hdw','age':45,'name':'Sue Jones'}
>>> people =[bob, sue]
>>>[rec['age']+100if rec['age']>=45else rec['age']for rec in people]# 注意for位置
[42,145]
列表推导式总共有两种形式:
①[x for x in data if condition]
此处if主要起条件判断作用,data数据中只有满足if条件的才会被留下,最后统一生成为一个数据列表
②[exp1 if condition else exp2 for x in data]
此处if...else主要起赋值作用,当data中的数据满足if条件时将其做exp1处理,否则按照exp2处理,最后统一生成为一个数据列表
例子如下:
data =['driver','2017-07-13',1827.0,2058.0,978.0,1636.0,1863.0,2537.0,1061.0](1)若我要取得以上列表中值大于2000的数值,这里可以使用列表推导式的形式①:
[x for x in data if x >2000]
得到如下结果(字符串类型数据被认为是无穷大数):
['driver','2017-07-13',2058.0,2537.0](2)若要解决我上面提到的问题,则需要使用列表推导式的形式②
[int(x)iftype(x)==floatelse x for x in data]
得到结果:
['driver','2017-07-13',1827,2058,978,1636,1863,2537,1061]1、使用[]生成list
基本格式
variable =[out_exp_res for out_exp in input_list if out_exp ==2]
out_exp_res: 列表生成元素表达式,可以是有返回值的函数。
for out_exp in input_list: 迭代input_list将out_exp传入out_exp_res表达式中。
if out_exp ==2: 根据条件过滤哪些值可以。
例一:
multiples =[i for i inrange(30)if i %3is0]
print(multiples)
# Output: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
例二:
defsquared(x):return x*x
multiples =[squared(i)for i inrange(30)if i %3is0]
print multiples
# Output: [0, 9, 36, 81, 144, 225, 324, 441, 576, 729]2、使用()生成generator
将俩表推导式的[]改成()即可得到生成器。
multiples =(i for i inrange(30)if i %3is0)
print(type(multiples))
# Output: <type 'generator'>
二、字典推导式
字典推导和列表推导的使用方法是类似的,只不中括号该改成大括号。
{ key_expr: value_expr for value in collection if condition }
直接举例说明:
l =["%02d:%02d"%(h,m)for h inrange(0,24)for m inrange(0,60,5)]
d ={key:0for key in s}
print(d)
print(sorted(d.key()))
例1: 用字典推导式以字符串以及其长度建字典
>>> strings =['import','is','with','if','file','exception']>>> D ={key: val for val,key inenumerate(strings)}>>> D
{'exception':5,'is':1,'file':4,'import':0,'with':2,'if':3}
例子一:大小写key合并
mcase ={'a':10,'b':34,'A':7,'Z':3}
mcase_frequency ={
k.lower(): mcase.get(k.lower(),0)+ mcase.get(k.upper(),0)for k in mcase.keys()if k.lower()in['a','b']}
print mcase_frequency
# Output: {'a': 17, 'b': 34}
例子二:快速更换key和value
mcase ={'a':10,'b':34}
mcase_frequency ={v: k for k, v in mcase.items()}
print mcase_frequency
# Output: {10: 'a', 34: 'b'}
三、集合推导式
它们跟列表推导式也是类似的。 唯一的区别在于它使用大括号{}。
{ expr for value in collection if condition }
例一:
squared ={x**2for x in[1,1,2]}
print(squared)
# Output: set([1, 4])
例1: 用集合推导建字符串长度的集合
>>> strings =['a','is','with','if','file','exception']
>>>{len(s)for s in strings}#有长度相同的会只留一个,这在实际上也非常有用
set([1,2,4,9])
嵌套列表是指列表中嵌套列表,比如说:>>> L =[[1,2,3],[4,5,6],[7,8,9]]
例1: 一个由男人列表和女人列表组成的嵌套列表,取出姓名中带有两个以上字母e的姓名,组成列表
names =[['Tom','Billy','Jefferson','Andrew','Wesley','Steven','Joe'],['Alice','Jill','Ana','Wendy','Jennifer','Sherry','Eva']]
用for循环实现:
tmp =[]for lst in names:for name in lst:if name.count('e')>=2:
tmp.append(name)print tmp
#输出结果 >>>['Jefferson','Wesley','Steven','Jennifer']
用嵌套列表实现:>>>[name for lst in names for name in lst if name.count('e')>=2]#注意遍历顺序,这是实现的关键 ['Jefferson','Wesley','Steven','Jennifer']