- 博客(6)
- 资源 (2)
- 收藏
- 关注
转载 先验与后验概率
用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确假设的机会的背景知识如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率。机器学习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率。
2016-04-09 22:22:17 288
翻译 MCMC与Metropolis-Hastings 算法
1.问题: 对一些分布如均匀分布等是很容易采样的,但是对于很多分布尤其是多维的概率分布采样是很困难的。 MCMC就是为了解决采样的问题的。 2.方法:(1)思想:给定一个p(x)如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态X0出发沿着马氏链转移, 得到一个转移序列 X1,X2,X3,⋯Xn,Xn+1⋯,⋯,
2016-04-09 22:16:21 1744
原创 玻尔兹曼机
结构:两层的神经网络(可视层与隐藏层);双向全连接:即可视层作为输入用于激活隐藏层单元,隐藏层作为输入用于激活可视层单元(输入信息重构) 目的:输入向量V与输出向量H(隐藏层的输出)尽可能一一对应。即H进可能是V的编码。 只有H与V一一对应,重构信息才能与v与v‘误差尽可能小。 构造一个(v,h)的联合分布函数,当p(v,h)尽可能大时,H与V才尽可能一一对应。
2016-04-09 22:15:17 1228
原创 adaboost
a思想:利用多个弱分类器的输出结果加权,得到最终的分类结果。并且,通过第一个弱分类器调整第二个弱分类器权重,通过第二个弱分类器调整第三个分类器的权重。b基本原理: 使样本权重w均匀分布 For t=1:n 使用若分类器Vt对训练样本分类; 计算分类错误率;
2016-04-09 22:07:56 332
原创 BF神经网络
分为两个步骤正向传播和后向传播,是一种监督学习。经过正向传播和后向传播的反复运算,当训练样本的期望输出与输出的误差函数最小时,得出的权重就是训练所得的最终权重。正向传播:输入数据从输入层,到隐藏层,到输出层得到输出数据。数据从输入到输出方向。后向传播: 从输出层开始,调整出输出层的权重,然后调整隐藏层的权重。权重的调整从输出到输入方向。输出层的权重调整:利用梯度下降法。用误差函数对输出
2016-04-09 22:06:01 1147
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人