kmeans代码分析

kmeans: 
缺点: 对初始值的选取敏感, 使用bikmean可以解决。
完整代码参考博客:http://blog.csdn.net/zouxy09/article/details/17590137
kmeans算法分析:
1、初始化聚类中心
def initCentroids(dataSet, k):
    numSamples, dim = dataSet.shape
    centroids = zeros((k, dim))
    for i in range(k):
        index = int(random.uniform(0, numSamples))
        centroids[i, :] = dataSet[index, :]
    return centroids
循环:
如果未迭代:即clusterChanged = True
1、计算各点到聚类中心的距离, 选择最近的距离, 更新clusterAssent:第一列存放该样本所在簇的类标,第二列存储该样本到对应簇中心的距离。判断是否迭代,更新 clusterChanged 。
while clusterChanged:
    clusterChanged = False
    ## for each sample
    for i in range(numSamples):
        minDist = 100000.0
        minIndex = 0
        ## for each centroid
        ## step 2: find the centroid who is closest
        for j in range(k):
            distance = euclDistance(centroids[j, :], dataSet[i, :])
            if distance < minDist:
                minDist = distance
                minIndex = j  #距离最小的聚类中心类标

                ## step 3: update its cluster
        if clusterAssment[i, 0] != minIndex:
            clusterChanged = True
            clusterAssment[i, :] = minIndex, minDist ** 2
2、更新聚类中心
for j in range(k):
    pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
    centroids[j, :] = mean(pointsInCluster, axis=0)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值