快速选择算法的目的在于可以以O(n)的时间复杂度来选择一个无序随机数组中第k小(大)的元素,它是根据快速排序算法的思想简化而来的。
快速选择算法同样利用了分治回归策略,由于只需要选择出第k小(大)的元素,因此它在分治之后只需要考虑一边的元素情况。它同样利用了快速排序的分割元素集的思想,随机产生一个枢纽元(pivot),将小于pivot的分到左边,大于pivot的分到右边,记录pivot的位置(记为pos),并且判断其位置与选择k个最小(大)元素的大小关系,来确定是从左侧选k个还是从右侧选k-pos个,或是直接选到。
具体实现的C语言代码如下:
#include "stdafx.h"
#include<stdio.h>
#include<stdlib.h>
int divideset(int*a, int n, int pivotind) {//将数组按照pivotind处的值分割,并返回该值最后是在那个位置上
int i, j;
int tem;
//先交换a[pivot]和最后一个元素
tem = a[pivotind];
a[pivotind] = a[n - 1];
a[n - 1] = tem;
i = 0;
j = n - 2;
while (i < j) {
while (a[i] < a[n - 1]) {
i++;
}
while (a[j] > a[n - 1]) {
j--;
}
if (i < j) {
tem = a[i];
a[i] = a[j];
a[j] = tem;
}
}
tem = a[i];
a[i] = a[n-1];
a[n-1] = tem;
return i;
}
int quickselect(int* a,int n, int k) {
int pos=divideset(a,n, 0);
//divideset这个函数所做的事是根据pivot来将有n个元素的数组重新分配,并返回pivot的位置pos。
if (pos == k - 1) {
return a[pos];
}
else if (pos > k-1) {
int* b = (int*)malloc((pos + 1) * sizeof(int));
for (int i = 0;i < pos + 1;i++) {
b[i] = a[i];
}
return quickselect(b,pos+1 ,k);
}
else {
int* b = (int*)malloc((n-pos) * sizeof(int));
for (int i = 0;i < n-pos;i++) {
b[i] = a[pos+i];
}
return quickselect(b,n-pos,k - pos);
}
}
int main()
{
printf("input N and K:");
int i, n, k;
scanf_s("%d%d", &n, &k);
int* a = (int*)malloc(n * sizeof(int));
for (i = 0;i < n;i++) {
scanf_s("%d", &a[i]);
}
printf("\n");
printf("%d", quickselect(a,n,k));
system("pause");
return 0;
}