快速选择算法

快速选择算法的目的在于可以以O(n)的时间复杂度来选择一个无序随机数组中第k小(大)的元素,它是根据快速排序算法的思想简化而来的。

快速选择算法同样利用了分治回归策略,由于只需要选择出第k小(大)的元素,因此它在分治之后只需要考虑一边的元素情况。它同样利用了快速排序的分割元素集的思想,随机产生一个枢纽元(pivot),将小于pivot的分到左边,大于pivot的分到右边,记录pivot的位置(记为pos),并且判断其位置与选择k个最小(大)元素的大小关系,来确定是从左侧选k个还是从右侧选k-pos个,或是直接选到。

具体实现的C语言代码如下:

#include "stdafx.h"
#include<stdio.h>
#include<stdlib.h>
int divideset(int*a, int n, int pivotind) {//将数组按照pivotind处的值分割,并返回该值最后是在那个位置上
	int i, j;
	int tem;
	//先交换a[pivot]和最后一个元素
	tem = a[pivotind];
	a[pivotind] = a[n - 1];
	a[n - 1] = tem;
	i = 0;
	j = n - 2;
	while (i < j) {
		while (a[i] < a[n - 1]) {
			i++;
		}
		while (a[j] > a[n - 1]) {
			j--;
		}
		if (i < j) {
			tem = a[i];
			a[i] = a[j];
			a[j] = tem;
		}
	}
	tem = a[i];
	a[i] = a[n-1];
	a[n-1] = tem;
	return i;
}
int quickselect(int* a,int n, int k) {
	int pos=divideset(a,n, 0);
	//divideset这个函数所做的事是根据pivot来将有n个元素的数组重新分配,并返回pivot的位置pos。
	if (pos == k - 1) {
		return a[pos];
	}
	else if (pos > k-1) {
		int* b = (int*)malloc((pos + 1) * sizeof(int));
		for (int i = 0;i < pos + 1;i++) {
			b[i] = a[i];
		}
		return quickselect(b,pos+1 ,k);
	}
	else {
		int* b = (int*)malloc((n-pos) * sizeof(int));
		for (int i = 0;i < n-pos;i++) {
			b[i] = a[pos+i];
		}
		return quickselect(b,n-pos,k - pos);
	}
}
int main()
{
	printf("input N and K:");
	int i, n, k;
	scanf_s("%d%d", &n, &k);
	int* a = (int*)malloc(n * sizeof(int));
	for (i = 0;i < n;i++) {
		scanf_s("%d", &a[i]);
	}
	printf("\n");
	printf("%d", quickselect(a,n,k));
	system("pause");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值