1051 复数乘法 (15分)
复数可以写成 (A+Bi) 的常规形式,其中 A 是实部,B 是虚部,i 是虚数单位,满足 i2 =−1;也可以写成极坐标下的指数形式 (R×e(Pi) ),其中 R 是复数模,P 是辐角,i 是虚数单位,其等价于三角形式 R(cos( P)+isin( P))。
现给定两个复数的 R 和 P,要求输出两数乘积的常规形式。
输入格式:
输入在一行中依次给出两个复数的 R1 , P1 , R2 , P2 ,数字间以空格分隔。
输出格式:
在一行中按照 A+Bi 的格式输出两数乘积的常规形式,实部和虚部均保留 2 位小数。注意:如果 B 是负数,则应该写成 A-|B|i 的形式。
输入样例:
2.3 3.5 5.2 0.4
输出样例:
-8.68-8.23i
思路:
主要的难点在于读题。还有就是浮点数的运算,判断一个浮点数是否为0,不能用 a==0这么判断。要判断它是否小于一个极小值。
统计数据:
题解 方法一:
#include <cstdio>
#include <cmath>
using namespace std;
double r1,p1,r2,p2,tmpa,tmpb;
int main(){
scanf("%lf %lf %lf %lf",&r1,&p1,&r2,&p2);
tmpa = r1*r2*cos(p1)*cos(p2)-r1*r2*sin(p1)*sin(p2); //tmpa = r1*r2*cos(p1+p2) 这里也可以用积化和差化简一下,我数学不是很好
tmpb = r1*r2*sin(p2)*cos(p1)+r1*r2*cos(p2)*sin(p1); //tmpb = r1*r2*sin(p1+p2) 复数乘法原理,模相乘,幅角相加。都忘干净了
tmpa = fabs(tmpa)<1e-2?0:tmpa; //判断一个浮点数是否为0
tmpb = fabs(tmpb)<1e-2?0:tmpb;
printf("%.2f%+.2fi",tmpa,tmpb); //%+.2f 首先是小数点后保留两位,+号的意思是显示符号,比如正数就显示+,负号就显示-
return 0;
}