PAT乙级 1051 复数乘法 (15分)

该博客详细介绍了PAT乙级1051题目的复数乘法问题,提供了输入输出格式及样例,并强调了在处理浮点数时的判断技巧。博主分享了解题思路,主要难点在于正确理解和处理复数的指数形式与常规形式之间的转换,以及浮点数接近0时的判断方法。
摘要由CSDN通过智能技术生成

1051 复数乘法 (15分)

复数可以写成 (A+Bi) 的常规形式,其中 A 是实部,B 是虚部,i 是虚数单位,满足 i​2​​ =−1;也可以写成极坐标下的指数形式 (R×e​(Pi)​​ ),其中 R 是复数模,P 是辐角,i 是虚数单位,其等价于三角形式 R(cos( P)+isin( P))。

现给定两个复数的 R 和 P,要求输出两数乘积的常规形式。

输入格式:

输入在一行中依次给出两个复数的 R​1​​ , P​1​​ , R​2​​ , P​2​​ ,数字间以空格分隔。

输出格式:

在一行中按照 A+Bi 的格式输出两数乘积的常规形式,实部和虚部均保留 2 位小数。注意:如果 B 是负数,则应该写成 A-|B|i 的形式。

输入样例:

2.3 3.5 5.2 0.4

输出样例:

-8.68-8.23i

思路:

主要的难点在于读题。还有就是浮点数的运算,判断一个浮点数是否为0,不能用 a==0这么判断。要判断它是否小于一个极小值。

统计数据:

在这里插入图片描述

题解 方法一:

#include <cstdio>
#include <cmath>
using namespace std;

double r1,p1,r2,p2,tmpa,tmpb;

int main(){
    scanf("%lf %lf %lf %lf",&r1,&p1,&r2,&p2);
    tmpa = r1*r2*cos(p1)*cos(p2)-r1*r2*sin(p1)*sin(p2); //tmpa = r1*r2*cos(p1+p2) 这里也可以用积化和差化简一下,我数学不是很好
    tmpb = r1*r2*sin(p2)*cos(p1)+r1*r2*cos(p2)*sin(p1); //tmpb = r1*r2*sin(p1+p2) 复数乘法原理,模相乘,幅角相加。都忘干净了
    tmpa = fabs(tmpa)<1e-2?0:tmpa;  //判断一个浮点数是否为0
    tmpb = fabs(tmpb)<1e-2?0:tmpb;
    printf("%.2f%+.2fi",tmpa,tmpb);  //%+.2f 首先是小数点后保留两位,+号的意思是显示符号,比如正数就显示+,负号就显示-
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值