深度学习
Chaojun_Shi
这个作者很懒,什么都没留下…
展开
-
pytorch实现卷积神经网络(LeNet5)
1. 建立LeNet5主干网络import torchfrom torch import nn# 定义网络模型class LeNet5(nn.Module): #初始化网络 def __init__(self): super(LeNet5, self).__init__() self.c1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=5, padding=2)原创 2022-05-10 10:00:44 · 927 阅读 · 0 评论 -
Windows11 pytorch安装教程
1. CUDA11.62. Anaconda4.10.33. 安装torch,在Anaconda prompt中依次输入以下命令:conda config --set show_channel_urls yesconda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.原创 2022-05-04 22:22:04 · 1572 阅读 · 0 评论 -
分批读取训练数据进行训练
训练集数据量过大受设备内存影响不能将全部数据直接放到网络中进行训练,需要分批读取训练数据。train_x为训练集地址,train_y为训练集标签,val_X为验证集数据,val_y为验证集标签。分批读取函数如下:def dataset_split(images, labels, batch_size): while 1: i = 0 n = math.ceil(len(images)/batch_size) print(n)原创 2020-07-06 09:57:30 · 1875 阅读 · 0 评论 -
Visio绘制长方体
第一步:打开Visio;第二步:绘制一个矩形;第三步:复制矩形;第四步:用直线将两个矩形连接;第五步:删除第一个矩形(辅助矩形);第六步:用直线连接修复,绘制完毕。原创 2020-06-21 20:10:55 · 19985 阅读 · 8 评论 -
模型训练后期学习率调整策略
虽然Adam等优化器能自适应调整学习率,但是到了模型训练后期仍需要手动调整学习率来提高模型性能,降低vall_loss值。以keras为例,keras提供了两种学习率调整策略,可以通过回调函数实现。1. LearningRateSchedulerkeras.callbacks.LearningRateScheduler(schedule)该回调函数是学习率调度器。参数schedule: 该函数以eopch为监测量(从0算起的整数),返回一个新的学习率(浮点数)代码impor原创 2020-06-20 15:56:39 · 2123 阅读 · 0 评论 -
模型训练终止训练方法
1. 设置固定的epochs;2. 模型终止训练与val_loss值相关,根据keras函数early stopping终止迭代。# early stopppingfrom keras.callbacks import EarlyStoppingearly_stopping = EarlyStopping(monitor='val_loss', patience=50, verbose=2)# 训练history = model.fit(train_X, train_y, epochs=3原创 2020-06-18 20:54:08 · 10531 阅读 · 1 评论 -
深度学习中训练集、验证集和测试集的区别
先码个标题,有空了过来补充。 (2020年6月18日)...原创 2020-06-18 19:11:24 · 3907 阅读 · 0 评论 -
linux常用命令汇编
1. 查看Nvidia显卡信息及使用情况 nvidia-smi;原创 2020-05-27 15:46:31 · 186 阅读 · 0 评论 -
keras 模型中自定义上采样函数,加载模型报错: ValueError: Unknown layer: BilinearUpsampling
模型自定义了BilinearUpsampling层如下代码,模型训练能正常调用BilinearUpsampling,模型保存用ModelCheckpoint,测试时加载模型报错:ValueError: Unknown layer: BilinearUpsamplingclass BilinearUpsampling(Layer): def __init__(self, upsamp...原创 2019-10-28 19:43:32 · 2276 阅读 · 3 评论 -
RAdam的keras实现
https://blog.csdn.net/u010592244/article/details/100068261转载 2019-10-27 16:25:16 · 605 阅读 · 0 评论 -
win10+python3.6环境下安装pydensecrf
在该链接https://www.lfd.uci.edu/~gohlke/pythonlibs/#pydensecrf中下载对应版本的.whl最后在Anaconda prompt中运行pip install D:xx\xxxx.whl就安装完成了。原创 2019-08-12 10:09:30 · 1242 阅读 · 0 评论 -
卷积神经网络CNN(LeNet):Tensorflow实现(以及对卷积特征的可视化)
https://blog.csdn.net/u014281392/article/details/74316028?locationNum=1&fps=1转载 2018-11-29 15:25:41 · 927 阅读 · 0 评论 -
深度学习之语义分割中的度量标准(准确度)(pixel accuracy, mean accuracy, mean IU, frequency weighted IU)
https://blog.csdn.net/majinlei121/article/details/78965435深度学习之语义分割中的度量标准(准确度)(pixel accuracy, mean accuracy, mean IU, frequency weighted IU)转载 2018-10-04 11:10:28 · 5037 阅读 · 3 评论 -
谈谈深度学习中的 Batch_Size
https://blog.csdn.net/ycheng_sjtu/article/details/49804041谈谈深度学习中的 Batch_SizeBatch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。首先,为什么需要有 Batch_Size 这个参数?Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Ful...转载 2018-08-16 22:21:01 · 224 阅读 · 0 评论 -
labelme安装及使用
转自:https://blog.csdn.net/shwan_ma/article/details/77823281图像语义分割是一种pixel-wise级的一种图像分类操作,其目的是在图像中上的同一个类别上打上相同的label,以表示这个类别是同一类。在训练自己的数据集中,语义分割最重要且最基础的一步便是对图像进行标注,以训练得到自己的模型。在标注图像中,MIT开源了一款标注软件,Labelme...转载 2018-06-14 15:54:49 · 46443 阅读 · 19 评论 -
卷积神经网络
本文转自:http://dataunion.org/11692.html卷积神经网络转载请注明:http://blog.csdn.NET/stdcoutzyx/article/details/41596663自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-conv转载 2017-03-09 09:46:47 · 193 阅读 · 0 评论 -
深度学习之父
http://www.dlworld.cn/YeJieDongTai/718.html转载 2017-02-28 16:15:40 · 922 阅读 · 0 评论