leetcode-460:LFU 缓存
题目
请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。
实现 LFUCache 类:
LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
int get(int key) - 如果键 key 存在于缓存中,则获取键的值,否则返回 -1 。
void put(int key, int value) - 如果键 key 已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量 capacity 时,则应该在插入新项之前,移除最不经常使用的项。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。
为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。
当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
示例:
输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // 返回 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // 返回 -1(未找到)
lfu.get(3); // 返回 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // 返回 -1(未找到)
lfu.get(3); // 返回 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // 返回 4
// cache=[3,4], cnt(4)=2, cnt(3)=3
解题
方法一:哈希+红黑树
struct Node{
int key,value;
int cnt,time;
Node(int _key,int _value,int _cnt,int _time):cnt(_cnt),time(_time),key(_key),value(_value){}
};
struct cmp{
bool operator()(const Node* a,const Node* b)const {
return a->cnt==b->cnt?a->time<b->time:a->cnt<b->cnt;
}
};
class LFUCache {
int capacity,time;
unordered_map<int,Node*> mp;
set<Node*,cmp> set;
public:
LFUCache(int _capacity) {
capacity=_capacity;
time=0;
mp.clear();
set.clear();
}
int get(int key) {
if(capacity==0) return -1;
if(mp.count(key)==0) return -1;
Node* p=mp[key];
set.erase(p);
p->cnt++;
p->time=++time;
set.insert(p);
mp[key]=p;
return p->value;
}
void put(int key, int value) {
if(capacity==0) return;
if(mp.count(key)==0){
if(mp.size()==capacity){
Node* p=*(set.begin());
mp.erase(p->key);
set.erase(set.begin());
delete p;
}
Node* p=new Node(key,value,1,++time);
mp[key]=p;
set.insert(p);
}else{
Node* p=mp[key];
set.erase(p);
p->value=value;
p->cnt++;
p->time=++time;
set.insert(p);
mp[key]=p;
}
}
};