尚硅谷Docker实战教程学习笔记
我不会设置仅粉丝可见,不需要你关注我,仅仅希望我的踩坑经验能帮到你。如果有帮助,麻烦点个 👍 吧,这会让我创作动力+1 😁
文章目录
写在前面
-  封面 | 摘要 | 关键词 尚硅谷Docker实战教程 docker 李英俊 尚硅谷
-  感想 | 摘抄 | 问题 -  什么是云原生:(我的理解)一切在云端,基于容器开发的都会打包push到registry中,然后pull下来进行使用 
-  开发流程: 
-  面试题快速跳转: 
 
-  
1. Docker简介
-  是什么 -  为什么会有docker出现 系统平滑移植,容器虚拟化技术 Docker的出现使得Docker得以打破过去「程序即应用」的观念。透过镜像(images)将作业系统核心除外,运作应用程式所需要的系统环境,由下而上打包,达到应用程式跨平台间的无缝接轨运作。  
-  docker的理念  
-  Docker是基于Go语言实现的云开源项目 
-  Docker的主要目标是:Build, Ship and Run Any App, Anywhere。也就是通过对应用组件的封装、分发、部署、运行等生命周期的管理,使用户的APP及其运行环境能够做到 一次镜像,处处运行 
-  Docker解决了运行环境和配置问题的软件容器,方便做持续集成并有助于整体发布的容器虚拟化技术 
 
-  
-  容器与虚拟机比较 -  虚拟机(virtual machine)就是带环境安装的一种解决方案。 - 缺点:资源占用多,冗余步骤多,启动慢
 
-  由于前面虚拟机存在缺点,Linux发展出了另一种虚拟化技术:Linux容器(Linux Containers,LXC)。 -  Linux容器是与系统其他部分隔离开的一系列进程,从另一个镜像运行,并由该镜像提供支持进程所需的全部文件。容器提供的镜像包含了应用的所有依赖项,因而在从开发到测试再到生产的整个过程中,它都具有可移植性和一致性。 
-  Docker容器是在操作系统层面上实现虚拟化,直接复用本地主机的操作系统,而传统虚拟机则是在硬件层面实现虚拟化。与传统的虚拟机相比,Docker优势体现为启动速度快,占用体积小。 
  
-  
-  总结 - 传统虚拟机技术是虚拟出一套硬件后,在其上运行一个完整的操作系统,在该系统上再运行所需应用进程;
- 容器内的应用进程直接运行于宿主的内核,容器内没有自己的内核且也没有进行硬件虚拟。因此容器要比传统虚拟机更为轻便;
- 每个容器之间互相隔离,每个容器有自己的文件系统,容器之间进程不会相互影响,能区分计算资源。
 
 
-  
-  能干嘛 -  技术职级的变化:coder->programmer->software engineer->DevOps engineer 
-  开发/运维(DevOps)新一代开发工程师 -  一次构建、随处运行 - 更快的应用交付和部署
- 更便捷的升级和扩缩容
- 更简单的系统运维
- 更高效的计算资源利用
 
-  Docker的应用场景  
 
-  
 
-  
-  去哪儿下 - docker官网:http://www.docker.com/
- Docker Hub仓库:http://www.hub.docker.com/,安装docker镜像的仓库
 
2. Docker安装
-  前提说明 - Docker 并非是一个通用的容器工具,它依于已存在并运行的 Linux 内核环境。
- Docker 实质上是在已经运行的 Linux 下制造了个隔离的文件环境,因此它执行的效率几乎等同于所部署的 Linux 主机。
- 因此
 Docker 必须部署在 Linux 内核的系统上,如果其他系统想部署 Docker 就必须安装一个虚拟 Linux 环境。
- 获取系统版本内核:uname -r
 
-  docker的基本组成 -  镜像,image 类 - Redis r1 = docker run 镜像类似鲸鱼背上的集装箱,就是一个容器实例
 
-  容器,container 实例 - 上述的 r1、r2、r3…多个实例
- 容器是用镜像创建的运行实例
- 可以看作是一个简易版的Linux环境(包括root用户权限、进程空间、用户空间和网络空间等)和运行在其中的应用程序。
 
-  仓库,repository 存放镜像的地方 - Maven仓库:放各种jar包
- Github仓库:放各种git项目
- Docker Hub:放各种镜像模板
 
-  小总结:image文件可以看作是容器的模板,Docker根据image文件生成容器的实例。同一个image文件,可以生成多个同时运行的容器实例。   - docker daemon:真正干活的,通过Socket连接从客户端访问,守护进程从客户端接收命令并管理运行在主机上的容器。
 
 
-  
-  docker平台架构 -  docker是一个C/S模式的架构,后端是一个松耦合架构,众多模块各司其职  
-  Docker运行的基本流程: - 用户使用Docker Client与Docker Daemon建立通信,并发送请求给后者
- Docker Daemon作为Docker架构中的主体部分,首先提供Docker Server的功能,使其可以接收Docker Client的请求
- Docker Engine执行Docker内部的一系列工作,每一项工作都是以一个Job的形式存在
- Job的运行过程中,当需要容器镜像时,则从Docker Registry中下载镜像,并通过镜像管理驱动Graph driver将下载镜像以Graph的形式存储
- 当需要为Docker创建网络环境时,通过网络管理驱动Network driver创建并配置Docker容器网络环境
- 当需要限制docker容器运行资源或者执行用户指令等操作时,则通过Exec driver来完成
- Libcontainer是一项独立的容器管理包,Network driver以及Exec driver都是通过Libcontainer来实现具体对容器进行的操作
 
 
-  
-  安装步骤 - 确定版本
- 卸载旧版本
- yum安装gcc相关 
    - 能上外网(CentOS7)
- yum -y install gcc
- yum -y install gcc-c++
 
- 安装需要的软件包 
    - yum install -y yum-utils
- 配置docker库:yum-config-manager --add-repo https://xxx
- 推荐使用阿里云的加速:yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
- 更新yum软件包索引:yum makecache fast
 
- 安装docker:yum install docker-ce docker-ce-cli containerd.io
- 启动docker:systemctl start docker
- HelloWorld:docker run hello-world、docker version- 本地没有hello-world,则会从远程库拉下来运行
 
- 卸载: 
    - systemctl stop docker
- yum remove docker-ce docker-ce-cli containerd.io
- rm -rf /var/lib/docker
- rm -rf /var/lib/containerd
 
 
-  阿里云镜像加速 -  是什么:https://promotion.aliyun.com/ntms/act/kubernetes.html 
-  注册账户,工具台,容器镜像服务,镜像工具,镜像加速器,获取加速器地址链接:https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors # 创建目录,将镜像配置反写回文件 sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-'EOF' { "registry-mirrors": ["https://[你自己的].mirror.aliyuncs.com"] } EOF # 重启docker sudo systemctl daemon-reload sudo systemctl restart docker
 
-  
-  测试运行hello-world -  docker run hello-world
-  run到底干了什么  
 
-  
-  底层原理:为什么Docker会比VM虚拟机要快 -  docker有着比虚拟机更少的抽象层 由于docker不需要Hypervisor(虚拟机)实现硬件层面的虚拟化,运行在docker容器上的程序直接使用的都是实际物理机的硬件资源。因此在CPU、内存利用率上,docker将会在效率上有明显优势。 
-  docker利用的是宿主机的内核,而不需要加载操作系统os内核 当新建一个容器时,docker不需要和和虚拟机一样重新加载一个操作系统内核。进而避免引寻、加载操作系统内核返回等比较费时费资源的过程,当新建一个虚拟机时,虚拟机软件需要加载OS,返回新建过程是分钟级别的。而docker由于直接利用宿主机的操作系统,则省略了返回过程,因此新建一个docker容器只需要几秒钟。 
  docker容器 虚拟机VM 操作系统 与宿主机共享OS 宿主机OS上运行虚拟机OS 存储大小 镜像小,便于存储与运输 镜像庞大(vmdk、vdi等) 运行性能 几乎无额外性能损失 操作系统额外的CPU、内存消耗 移植性 轻便、灵活,适用于Linux 笨重,与虚拟化技术耦合度高 硬件亲和性 面向软件开发者 面向硬件运维者 部署速度 快速,秒级 较慢,10s以上 
-  
3. Docker常用命令
-  帮助启动类命令 - systemctl start docker:启动docker
- systemctl stop docker:停止docker
- systemctl restart docker:重启docker
- systemctl status docker:查看docker状态
- systemctl enable docker:开机启动docker
- docker info:查看docker概要信息
- docker --help:查看docker总体帮助文档
- docker 具体命令 --help:查看docker命令帮助文档
 
-  镜像命令 -  docker images:列出本地主机上的镜像同一个仓库源可以有多个tag版本,代表这个仓库源的不同的版本,我们使用 REPOSITORY:TAG来定义不同的镜像。如果你不指定一个镜像的版本标签,例如你只使用 ubuntu,docker将默认使用 ubuntu:latest 镜像。REPOSITORY:表示镜像的仓库源 TAG:镜像的标签 IMAGE ID:镜像ID CREATED:镜像创建时间 SIZE:镜像大小OPTIONS说明: - -a:列出本地所有的镜像(含历史镜像层)
- -q:;只显示镜像ID
 
-  docker search 镜像名:默认是从hub.docker.com上检索镜像列表,一般选第一个官方认证过的,比较靠谱OPTIONS说明: - --limit:只列出N个镜像,默认25个,例如- docker search --limit 5 redis
 
-  docker pull 镜像名:下载镜像,docker pull 镜像名字[:TAG],没有tag就下载最新版
-  docker system df:查看镜像/容器/数据卷所占的空间
-  docker rmi [-f] 镜像名/镜像ID:[强制]删除镜像- 删除多个镜像:docker rmi -f id1 name2:tag2
- 删除全部镜像:docker rmi -f $(docker images -qa)
 
- 删除多个镜像:
 ❓ 谈谈docker虚悬镜像是什么? - 是什么:仓库名、标签都是的镜像,俗称虚悬镜像 dangling image
 📖 参考延申 虚悬镜像可能会在以下几种情况下产生: - 构建过程中出现错误,导致镜像没有被正确标记。
- 用户忘记为新创建的镜像添加标签。
- 用户试图删除一个正在被使用的镜像,但该镜像仍有其他容器在使用。
 虚悬镜像可能会带来一些问题: - 无法找到正确的镜像版本:当用户试图运行一个虚悬镜像时,他们可能无法确定应该使用哪个版本的镜像。这可能导致应用程序运行在不同的环境中,或者在不同版本的代码上运行,从而导致兼容性问题。
- 无法进行有效的更新:虚悬镜像意味着用户无法对其进行更新。即使镜像内部的版本进行了升级,用户也无法通过简单地添加一个新标签来获取这个新版本的镜像。
- 占用存储空间:虽然虚悬镜像不会立即影响应用程序的运行,但是它们会一直占用存储空间,直到有人为它们添加标签。
 如何解决虚悬镜像问题,我们可以采取以下几种方案: - 检查并重新标记镜像:如果发现虚悬镜像,可以尝试查找出现问题的构建过程,并修复其中的错误。然后为镜像添加一个新的标签,以确保用户能够找到正确的版本。
- 使用Dockerfile:Dockerfile可以帮助我们自动化镜像的构建过程,并确保每次构建的镜像都是正确且可重复的。通过编写详细的Dockerfile,我们可以确保每次构建的镜像都带有正确的标签。
- 定期清理虚悬镜像:Docker提供了一些命令来帮助用户管理虚悬镜像,例如docker rmi --force可以强制删除虚悬镜像。然而,最好的方法还是定期检查并清理这些无用的虚悬镜像,以节省存储空间。
 
-  
-  容器命令 有镜像才能创建容器,这是根本前提 -  docker run 镜像名:新建+启动容器,启动交互式容器(前台命令行)- --name=名字:容器新名字,为容器指定一个名称
- -d:后台运行容器并返回容器ID,启动守护式容器(后台运行)
- -i:以交互模式运行容器,通常与- -t同时使用
- -t:为容器重新分配一个伪输入中断,通常与- -i同时使用,也称交互式容器(前台有伪终端,等待交互)常用:- docker run -it ubuntu /bin/bash(以交互模式启动一个容器,在容器内执行 /bin/bash 命令,退出:exit)
- -P:随机端口映射,大P
- -p:指定端口映射,小p。例:- -p 6379:6379是指外面访问docker的6379服务(宿主机)被映射到容器内的6379服务(docker )
 
-  docker ps:列出当前所有正在运行的容器- -a:列出当前所有正在运行的容器+历史上运行过的
- -l:显示最近创建的容器
- -n:显示最近n个创建的容器
- -q:静默模式,只显示容器编号
 
-  容器的退出 - exit:run进去的容器,exit退出,容器停止(docker ps就没啦)
- ctrl+p+q:run进去的容器,ctrl+p+q,容器不停止
 
-  docker start 容器id/容器名:启动已经停止运行的容器
-  docker restart 容器id/容器名:重启容器
-  docker stop 容器id/容器名:停止容器
-  docker kill 容器id/容器名:强制停止容器
-  docker rm [-f] 容器id/容器名:[强制]删除容器一次性删除多个实例: - docker rm -f $(docker ps -a -q)
- docker ps -a -q | xargs docker rm
 
 
-  
-  其他 -  启动守护式容器(后台服务器) -  在大部分得场景下,我们希望docker的服务是在后台运行的,,我们可以通过 -d指定容器的后台运行模式
-  docker run -d 容器名问题:直接用 docker run 容器名启动后用docker ps -a进行查看发现容器已经退出了,需要注意很重要的一点是,Docker容器后台运行,就必须有一个前台进程。容器运行的命令如果不是那些一直挂起的命令(比如运行top,tail),就是会自动退出的。这是docker的机制问题,最佳的解决方案是:**将你要运行的程序以前台进程的形式运行,常见就是命令行模式 -it**,表示我还有交互操作,别中断。
-  以redis为例,用前台交互式的启动肯定不行: docker run -it redis;所以要用后台守护式启动:docker run -d redis
 
-  
-  docker log 容器id:查看容器日志
-  docker top 容器id:查看容器内运行的进程
-  docker inspect 镜像名/容器id:查看镜像配置/查看容器内部细节
-  进入正在运行的容器,并以命令行交互 - docker exec -it 容器id bashShell
- 重新进入还有一个命令:docker attach 容器id
 ❓ 上述两个命令的区别?工作中用哪一个? - attach直接进入容器启动命令的终端,不会启动新的进程,用exit退出,会导致容器的停止
- exec是在容器中打开新的终端,并且可以启动新的进程,用exit退出,不会导致容器的停止
 推荐在工作中使用 docker exec命令,因为退出容器终端也不会导致容器的停止一般用 -d后台启动的程序,再用docker exec进入对应容器实例
-  docker cp 容器id:容器内路径 目的主机路径:从容器内拷贝文件到主机上
-  导入导出容器: - export 导出容器的内容留作为一个tar归档文件[对应import命令]
- import 从tar包中的内容创建一个新的文件系统再导入为镜像[对应export]
- 案例 
      - docker export 容器id > 文件名.tar
- cat 文件名.tar | docker import - 镜像用户/镜像名:镜像版本号,例如:- cat abcd.tar | docker import - atguigu/ubuntu:3.7
 
 ☀️ docker save和docker export的区别 - docker save保存的是镜像(image),- docker export保存的是容器(container);
- docker load用来载入镜像包,- docker import用来载入容器包,但两者都会恢复为镜像;
- docker load不能对载入的镜像重命名,而- docker import可以为镜像指定新名称。
 
 
-  
-  小结  
4. Docker镜像
-  是什么:镜像是一种轻量级、可执行的独立软件包,它包含运行某个软件所需的所有内容,我们把应用程序和配置依赖打包好形成一个可交付的运行环境(包括代码、运行时需要的库、环境变量和配置文件等),这个打包好的运行环境就是image镜像文件。 
-  分层的镜像:UnionFS(联合文件系统),Union文件系统(UnionFS)是一种分层、轻量级并且高性能的文件系统,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem)。Union 文件系统是 Docker镜像的基础。镜像可以通过分层来进行继承,基于基研镜像(没有父镜像),可以制作各和具体的应用镜像。 特性:一次同时加载多个文件系统,但从外面看起来,只能看到一个文件系统,联合加载会把各层文件系统叠加起来,这样最终的文件系统会包含所有底层的文件和目录 
-  Docker镜像加载原理:docker的镜像实际上由一层一层的文件系统组成,这种层级的文件系统UnionFS。 bootfs(boot file system)主要包含bootloader和kernel, bootloader主要是引导加载kernel,Linux刚启动时会加载bootfs文件系统,在Docker镜像的最底层是引导文件系统bootfs。这一层与我们典型的Linux/unix系统是一样的,包含boot加载器和内核。当boot加载完成之后整个内核就都在内存中了,此时内存的使用权已由bootfs转交给内核,此时系统也会卸载bootfs。 rootfs (root file system),在bootfs之上,包含的就是典型 Linux 系统中的 /dev,/proc,/bin,/etc等标准目录和文件。rootfs就是各种不同的操作系统发行版,比如Ubuntu,Centos。 对于一个精简的OS,rootfs可以很小,只需要包括最基本的命令、工具和程序库就可以了,因为底层直接用Host和Kernel,自己只需要提供rootfs就行了。由此可见对于不同的linux发行版,bootfs基本是一致的,rootfs会有差别,因此不同的发行版可以公用bootfs。 ❓ 为什么Docker镜像要采用分层结构? 镜像分层最大的一个好处就是共享资源,方便复制迁移,就是为了复用。 比如说有多个镜像都从相同的 base 镜像构建而来,那么 Docker Host 只需在磁盘上保存一份 base 镜像;同时内存中也只需加载一份 base 镜像,就可以为所有容器服务了。而且镜像的每一层都可以被共享。 
-  重点理解 - Docker镜像层都是只读的,容器层是可写的
- 当容器启动时,一个新的可写层被加载到镜像的顶部。这一层通常被称作“容器层",“容器层"之下的都叫“镜像层”。
 
-  Docker镜像commit操作案例 -  docker commit提交容器副本,使之成为一个新的镜像
-  docker commit -m="提交的描述信息" -a="作者" 容器ID 要创建的目标镜像名称[:标签名]docker commit -m="vim cmd add ok" -a="huowang" de60078e6a9a huowang/myubuntu:1.0 docker images
 
-  
-  小结 Docker中的镜像分层,支持通过扩展现有镜像,创建新的镜像。类似Java继承于一个Base基础类,自己再按需扩展。新镜像是从 base 镜像一层一层叠加生成的。每安装一个软件,就在现有镜像的基础上增加一层。  
5. 本地镜像发布到阿里云
-  本地镜像发布到阿里云流程  
-  镜像的生成方法 - 方法1:基于当前容器创建一个新的镜像,新功能增强:docker commit [OPTIONS] 容器ID [REPOSITORY[:TAG]]
- 方法2:Dockerfile
 
- 方法1:基于当前容器创建一个新的镜像,新功能增强:
-  将本地镜像推送到阿里云 -  选择控制台,进入容器镜像服务 
-  选择个人实例 
-  命名空间-创建命名空间 
-  仓库名称-创建镜像仓库-选择命名空间-创建仓库名称-创建本地仓库-创建镜像仓库 
-  进入管理界面获得脚本 
-  将镜像推送到阿里云registry # 登录 docker login --username=你的用户名 registry.cn.qingdao.aliyuncs.com # 输入密码,Login Succeeded就是登录成功 docker tag [ImageId,即镜像id] registry.cn.qingdao.aliyuncs.com/命名空间/仓库名:[镜像版本号] docker push registry.cn.qingdao.aliyuncs.com/命名空间/仓库名:[镜像版本号]
 
-  
-  将阿里云上的镜像下载到本地 docker login --username=你的用户名 registry.cn.qingdao.aliyuncs.com docker pull registry.cn.qingdao.aliyuncs.com/命名空间/仓库名:[镜像版本号]
6. 本地镜像发布到私有库
-  是什么:官方是 hub.docker.com,国内一般选择阿里云,类似github,建立企业自己的github。Docker Registry 是官方提供的工具,用于构建私有镜像仓库。
-  将本地镜像推送到私有库 -  下载镜像 Docker Registry: docker pull registry
-  运行私有库 Registry,相当于本地有个私有的Docker Hub: docker run -d -p 5000:5000 -v /主机路径:/容器路径 --privileged=true registry我的实践: docker run -d -p 5005:5000 -v /mydocker:/tmp/registry --privileged=true registry,这里端口号试了下用5005做映射,看看好不好使-p 主机端口映射到容器端口 -v 将主机路径"/host/path"挂载到容器路径"/container/path",这样容器中的应用就可以访问"/container/path"目录,并且任何对这个路径的更改都会反映在主机的"/host/path"上 默认情况下,仓库被创建在容器的 /var/lib/registry目录下,建议自行用容器卷映射,方便宿主机联调
-  演示:创建一个新镜像,ubuntu安装ifconfig命令 apt install net-tools- 从Hub上下载ubuntu镜像到本地并成功运行
- 原始的Ubuntu镜像是不带着ifconfg命令的
- 外网连通的情况下,安装ifconfg命令并测试通过
- 安装完成后,commit我们自己的新镜像
- 启动我们的新镜像并和原来的对比
 
-  curl验证私服库上有什么镜像 - 根据上面的操作,pull并run了一个registry的容器;又打包了一个镜像,然后run,测试成功
- curl -XGET http://...:5000/v2/_catalog
- 我的实践:curl -XGET http://...:5005/v2/_catalog
 
-  将新镜像修改符合私服规范的Tag docker tag 镜像名称[:TAG] http://...:5000/镜像名称[:TAG]相当于把本机的镜像克隆了一份,按规范命名 我的实践: - 先把容器commit成镜像:docker commit -m="my ubuntu" -a="huowang" huowang huowang/myubuntu:1.0
- 再修改tag:docker tag huowang/myubuntu:1.0 ...:5005/huowangos:1.0
 
- 先把容器commit成镜像:
-  修改配置文件使之支持http -  vim /etc/docker/daemon.json,我们曾经在这里配置过阿里云的镜像"registry-mirrors": ["https://xxx.mirrors.aliyuncs.com"]
-  后面再加一个: "insecure-registries": ["你的registry ip地址:5000"]
-  docker默认不允许http方式推送镜像,通过配置选项来取消这个限制。修改完如果不生效,建议重启docker 
 我的实践: - 如果直接push,会报错:GET ...: http: server gave HTTP response to HTTPS client
- 所以需要在 daemon.json中增加对应的ip从而支持 HTTP
- 然后重启docker systemctl restart docker,注意,这步操作会把你所有的镜像给关了,很要命的,小心点。
- 最终push:docker push ...:5005/huowangos:1.0
 
-  
-  push推送到私服库: docker push 镜像名称[:TAG],其实这里的镜像名称就是:http://...:5005/镜像名称[:TAG]- curl验证私服库上有什么镜像:curl -XGET http://...:5005/v2/_catalog,应该就有啦
 
- curl验证私服库上有什么镜像:
-  pull到本地运行: docker pull http://...:5005/镜像名称[:TAG]
 
-  
7. Docker容器数据卷
-  🚫 坑:容器卷记得加入 --privileged=true否则,Docker挂载主机目录访问会出现 cannot open directory: Permission denied
-  参数v:默认情况下,仓库被创建在容器的 /var/lib/registry目录下,建议自行用容器卷映射,方便宿主机联调
-  是什么 - 有点类似我们redis里面的rdb和aof文件
- 将docker容器内的数据保存进宿主机的磁盘中
- 运行一个带有容器卷存储功能的容器实例
 卷是目录或文件,存在于一个或多个容器中,由docker挂载到容器,但不属于联合文件系统,因此能够绕过 Union File System 提供一些用于持续存储或共享数据的特性。卷的设计目的就是 数据的持久化,完全独立于容器的生存周期,因此Docker不会在容器删除时删除其挂载的数据卷docker run -it -privileged=true -v /宿主机绝对路径目录:/容器内目录 镜像名
-  能干嘛:将运用与运行的环境打包镜像,run后形成容器实例运行,但是我们对数据的要求希望是持久化的。Docker容器产生的数据,如果不备份,那么当容器实例删除后,容器内的数据自然也就没有了。为了能保存数据在docker中我们使用卷。 特点: - 数据卷可在容器之间共享或重用数据
- 卷中的更改可以直接实时生效
- 数据卷中的更改不会包含在镜像的更新中
- 数据卷的生命周期一直持续到没有容器使用它为止
 
-  案例: -  宿主vs容器之间映射添加容器卷,直接命令添加 -  docker run -it -privileged=true -v /宿主机绝对路径目录:/容器内目录 镜像名
-  查看数据卷是否挂载成功:可以在主机上看到 /mydocker,然后启动容器docker exec -it 容器id /bin/sh(因为没有bash),在容器的路径中看到/tmp/registry
-  也可以用 docker inspect 容器id,查看mount字段中的内容"Mounts": [ { "Type": "bind", "Source": "/mydocker", "Destination": "/tmp/registry", "Mode": "", "RW": true, "Propagation": "rprivate" }, ... ]
-  **注意:**如果把容器 docker stop之后,在宿主机路径下增加文件,重启容器之后,容器内部依然能看到对应的文件增加
 
-  
-  读写规则映射添加说明 - 读写(默认) 
      - docker run -it --privileged=true -v /宿主机绝对路径目录:/容器内目录:rw 镜像名
- rw为默认值
 
- 只读 
      - 容器实例内部被限制,只能读取不能写
- docker run -it --privileged=true -v /宿主机绝对路径目录:/容器内目录:ro 镜像名
- 宿主机写如内容可以同步给容器,容器可以读取到
 
 
- 读写(默认) 
      
-  卷的继承和共享 - 容器1完成和宿主机的映射
- 容器2继承容器1的卷规则:docker run -it --privileged=true --volumnes-from 父类容器 --name u2 ubuntu,其实这里的--volumnes就是-v
- 实现:父容器、子容器、宿主机文件共享
- 简单来说,无论谁死都不影响文件传递,一主二从
 
 
-  
8. Docker常规安装简介
-  总体步骤 - 搜索镜像
- 拉取镜像
- 查看镜像
- 启动镜像,服务端口映射
- 停止容器
- 移除容器
 
-  安装tomcat - docker hub上查找tomcat镜像:docker search tomcat
- 从docker hub上拉去tomcat镜像到本地:docker pull tomcat
- docker images查看是否有拉取到的tomcat
- 使用tomcat镜像创建容器实例(也叫运行镜像):docker run -it -p 8080:8080 --name t1 tomcat
- 访问 🐱 首页 
    - 问题:最后发现访问报错404异常
- 解决: 
      - 可能没有映射端口或者没有关闭防火墙
- 把webapps.dist目录换成webapps 
        - 先成功启动tomcat
- 查看webapps文件夹查看为空
 
 
 
 
- docker hub上查找tomcat镜像:
-  安装mysql -  docker search mysql
-  docker pull mysql:8.0.29
-  运行: -  docker run -p 33061:3306 -e MYSQL_ROOT_PASSWORD=root -d mysql:8.0.29
-  docker exec -it 3ce95ebd240c bashbash-4.4# mysql -uroot -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 9 Server version: 8.0.29 MySQL Community Server - GPL Copyright (c) 2000, 2022, Oracle and/or its affiliates. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql> show databases; +--------------------+ | Database | +--------------------+ | information_schema | | mysql | | performance_schema | | sys | +--------------------+ 4 rows in set (0.00 sec) mysql> create database db01; Query OK, 1 row affected (0.00 sec) mysql> use db01; Database changed mysql> create table t1(id int, name varchar(32)); Query OK, 0 rows affected (0.01 sec) mysql> insert into t1 values(1, 'zhangsan') -> ; Query OK, 1 row affected (0.01 sec) mysql> select * from t1; +------+----------+ | id | name | +------+----------+ | 1 | zhangsan | +------+----------+ 1 row in set (0.00 sec) mysql>
-  用工具连接也没问题 
-  问题: - 插入中文数据报错:docker上默认字符集编码隐患
- 删除容器之后,里面的mysql数据怎么办
 
 
-  
-  mysql实战: -  新建mysql容器实例: docker run -d -p 33061:3306 --privileged=true -v /data/litian_test/mysql/log:/var/log/mysql -v /data/litian_test/mysql/data:/var/liv/mysql -v /data/litian_test/mysql/conf:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=root --name ltmysql mysql:8.0.29
-  在宿主机 /data/litian_test/mysql/conf新建my.cnf:通过容器卷同步给mysql容器实例[client] default_character_set = utf8 [mysqld] collation_server = utf8_general_ci character_set_server = utf8
-  重新启动mysql容器实例再重新进入并查看字符编码: docker restart ltmysqlmysql> show variables like 'character%'; +--------------------------+--------------------------------+ | Variable_name | Value | +--------------------------+--------------------------------+ | character_set_client | utf8mb3 | | character_set_connection | utf8mb3 | | character_set_database | utf8mb3 | | character_set_filesystem | binary | | character_set_results | utf8mb3 | | character_set_server | utf8mb3 | | character_set_system | utf8mb3 | | character_sets_dir | /usr/share/mysql-8.0/charsets/ | +--------------------------+--------------------------------+ 8 rows in set (0.01 sec)
-  结论:docker安装完MySQL并run出容器后,建议请先修改完字符集编码后再新建mysql库-表-插数据 
 
-  
-  删除容器后,里面的mysql数据怎么办:数据不丢失 
 
-  
-  安装redis -  拉取redis镜像到本地 
-  容器卷记得加 --privileged=true
-  宿主机新建目录 /app/redis:mkdir -p /app/redis
-  将一个 redis.conf文件模板拷贝进/app/redis目录下
-  /app/redis目录下修改redis.conf文件(默认出厂的原始是redis.conf)- 开启redis密码验证(可选):requirepass 123
- 允许redis外地连接(必须):bind 127.0.0.1 ::1和bind 127.0.0.1这两行的注释取消
- 注释 daemonize yes,或者设置daemonize no,因为该配置和docker run中 -d 参数冲突,会导致容器一直启动失败
- 开启redis数据持久化(可选):appendonly yes
- 开启外部访问链接(可选):protected-mode no,关闭保护模式
 
- 开启redis密码验证(可选):
-  创建容器,运行镜像: docker run -p 63791:6379 --name ltredis --privileged=true -v /app/redis/redis.conf:/etc/redis/redis.conf -v /app/redis/data:/data -d redis:6.0.8 redis-server /etc/redis/redis.conf注意:这里不是 bash了,而是redis-server xxx测试效果: KAZ0VLGPT01:/app/redis # docker exec -it ltredis /bin/bash root@1843deb637b4:/data# redis-cli 127.0.0.1:6379> set k1 v1 OK 127.0.0.1:6379> get k1 "v1" 127.0.0.1:6379> ping PONG 127.0.0.1:6379> select 15 OK 127.0.0.1:6379[15]>
-  验证redis是按照指定的conf启动的: -  select 15的结果是ok的
-  退出后修改conf中 databases 16为databases 10
-  重启redis服务: docker restart ltredis
-  进入容器内测试是否超出index,则为修改成功 KAZ0VLGPT01:/app/redis # docker exec -it ltredis bash root@1843deb637b4:/data# redis-cli 127.0.0.1:6379> get k1 "v1" 127.0.0.1:6379> select 3 OK 127.0.0.1:6379[3]> select 15 (error) ERR DB index is out of range
 
-  
 
-  
-  安装nginx:见后续Portainer 
9. Docker复杂安装说明
-  安装mysql主从复制 -  主从复制原理(跳过不讲) 
-  做下一步之前的建议 -  👿 直接用mysql:5.7的镜像,会报错容器起不起来,这个问题在下面步骤中解释了,不再细说,但是我发现如果指定容器版本 mysql:5.7.29,就没有出现如下问题,更无需修复,所以建议在执行以下代码时,将所有5.9改为5.9.29
-  👿 在重启mysql容器之后,再进去,输入用户名和密码的时候发现: ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2)这个问题很玄学,先不要去百度,退出容器之后再进一次发现又好了,就很奇怪。。。最后是内存不够 
-  👿 注意 my.cnf千万别写成my.conf,切记切记,血的教训
 
-  
-  主从搭建步骤 -  新建服务器容器实例3307: docker run -p 3307:3306 --name mysql-master --privileged=true -v /mydata/mysql-master/log:/var/log/mysql -v /mydata/mysql-master/data:/var/lib/mysql -v /mydata/mysql-master/conf:/etc/mysql -e MYSQL_ROOT_PASSWORD=root -d mysql:5.7⚠️ 注意:在这一步可能会报错,容器创建成功但是启不起来,查看容器报错内容: docker logs mysql-master发现:[ERROR] [Entrypoint]: mysqld failed while attempting to check config command was: mysqld --verbose --help --log-bin-index=/tmp/tmp.WHijR591XA mysqld: Can't read dir of '/etc/mysql/conf.d/' (Errcode: 2 - No such file or directory) mysqld: [ERROR] Fatal error in defaults handling. Program aborted!📖 原因分析:官方的配置文件已经不放在/etc/mysql底下了 ⛵️ 解决方案: -  先创建一个简单的mysql容器实例: docker run -p 3307:3306 --name mysql-master -e MYSQL_ROOT_PASSWORD=root -d mysql:5.7
-  复制里面的 /etc/mysql文件夹:docker cp mysql-master:/etc/mysql/. /mydata/mysql-master/conf
-  删除这个临时容器: docker rm -f mysql-master
-  重新启动原始命令 
 
-  
-  进入 /mydata/mysql-master/conf目录下新建my.conf,插入以下内容[mysqld] ## 设置server_id,同一局域网中需要唯一 server_id=101 ## 指定不需要同步的数据库名称 binlog-ignore-db=mysql ## 开启二进制日志功能 log-bin=mall-mysql-bin ## 设置二进制日志使用内存大小(事务) binlog_cache_size=1M ## 设置使用的二进制日志格式(mixed,statement,row) binlog_format=mixed ## 二进制日志过期清理时间。默认值为0,表示不自动清理。 expire_logs_days=7 ## 跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。 ## 如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致 slave_skip_errors=1062
-  修改完配置后重启master实例: docker restart mysql-master
-  进入mysql-master容器 KAZ0VLGPT01:/mydata/mysql-master/conf # docker exec -it mysql-master bash bash-4.2# mysql -uroot -p Enter password: Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 2 Server version: 5.7.44 MySQL Community Server (GPL) Copyright (c) 2000, 2023, Oracle and/or its affiliates. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql>
-  master容器实例内创建数据同步用户 # 新建用户 create user 'slave'@'%' identified by '123456'; # 授权 grant replication slave, replication client on *.* to 'slave'@'%';
-  新建从服务器容器实例3308 docker run -p 3308:3306 --name mysql-slave --privileged=true -v /mydata/mysql-slave/log:/var/log/mysql -v /mydata/mysql-slave/data:/var/lib/mysql -v /mydata/mysql-slave/conf:/etc/mysql -e MYSQL_ROOT_PASSWORD=root -d mysql:5.7
-  进入 /mydata/mysql-slave/conf目录下新建my.conf,插入以下内容[mysqld] ## 设置server_id,同一局域网中需要唯一 server_id=102 ## 指定不需要同步的数据库名称 binlog-ignore-db=mysql ## 开启二进制日志功能,以备Slave作为其它数据库实例的Master时使用 log-bin=mall-mysql-slave1-bin ## 设置二进制日志使用内存大小(事务) binlog_cache_size=1M ## 设置使用的二进制日志格式(mixed,statement,row) binlog_format=mixed ## 二进制日志过期清理时间。默认值为0,表示不自动清理。 expire_logs_days=7 ## 跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。 ## 如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致 slave_skip_errors=1062 ## relay_log配置中继日志 relay_log=mall-mysql-relay-bin ## log_slave_updates表示slave将复制事件写进自己的二进制日志 log_slave_updates=1 ## slave设置为只读(具有super权限的用户除外) read_only=1
-  修改完配置后重启slave实例: docker restart mysql-slave
-  在主数据库中查看主从同步状态: show master status;(👿 真的能看到,如果是empty set,看看是不是配置文件的名称或者内容有问题),并且也可以通过show variables like '%log_bin%';看log_in是否开启mysql> show master status; +------------------------------+----------+--------------+------------------+-------------------+ | File | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_Set | +------------------------------+----------+--------------+------------------+-------------------+ | mall-mysql-slave1-bin.000001 | 154 | | mysql | | +------------------------------+----------+--------------+------------------+-------------------+ 1 row in set (0.01 sec)
-  进入mysql-slave容器中: docker exec -it mysql-slave bash
-  在从数据库中配置主从复制 change master to master_host='10.10.102.111', master_user='slave', master_password='123456', master_port=3307, master_log_file='mall-mysql-bin.000001', master_log_pos=154, master_connect_retry=30;- master_host:主数据库的IP地址;
- master_port:主数据库的运行端口;
- master_user:在主数据库创建的用于同步数据的用户账号;
- master_password:在主数据库创建的用于同步数据的用户密码;
- master_log_file:指定从数据库要复制数据的日志文件,通过查看主数据的状态,获取File参数;重要,从master status中拿到的数据
- master_log_pos:指定从数据库从哪个位置开始复制数据,通过查看主数据的状态,获取Position参数;重要,从master status中拿到的数据
- master_connect_retry:连接失败重试的时间间隔,单位为秒
 
-  在从数据库中查看主从同步状态: show slave status \G;mysql> show slave status \G; *************************** 1. row *************************** Slave_IO_State: Master_Host: 10.10.102.111 Master_User: slave Master_Port: 3307 Connect_Retry: 30 Master_Log_File: mall-mysql-bin .000001 Read_Master_Log_Pos: 154 Relay_Log_File: mall-mysql-relay-bin.000001 Relay_Log_Pos: 4 Relay_Master_Log_File: mall-mysql-bin .000001 Slave_IO_Running: No Slave_SQL_Running: No Replicate_Do_DB: Replicate_Ignore_DB: Replicate_Do_Table: Replicate_Ignore_Table: Replicate_Wild_Do_Table: Replicate_Wild_Ignore_Table: Last_Errno: 0 Last_Error: Skip_Counter: 0 Exec_Master_Log_Pos: 154 Relay_Log_Space: 154 Until_Condition: None Until_Log_File: Until_Log_Pos: 0 Master_SSL_Allowed: No Master_SSL_CA_File: Master_SSL_CA_Path: Master_SSL_Cert: Master_SSL_Cipher: Master_SSL_Key: Seconds_Behind_Master: NULL Master_SSL_Verify_Server_Cert: No Last_IO_Errno: 0 Last_IO_Error: Last_SQL_Errno: 0 Last_SQL_Error: Replicate_Ignore_Server_Ids: Master_Server_Id: 0 Master_UUID: Master_Info_File: /var/lib/mysql/master.info SQL_Delay: 0 SQL_Remaining_Delay: NULL Slave_SQL_Running_State: Master_Retry_Count: 86400 Master_Bind: Last_IO_Error_Timestamp: Last_SQL_Error_Timestamp: Master_SSL_Crl: Master_SSL_Crlpath: Retrieved_Gtid_Set: Executed_Gtid_Set: Auto_Position: 0 Replicate_Rewrite_DB: Channel_Name: Master_TLS_Version: 1 row in set (0.01 sec)Slave_IO_Running: No、Slave_SQL_Running: No表示还没开始
-  在从数据库中开启主从同步: start slave;
-  查看从数据库状态发现已经同步: show slave status \G;Slave_IO_Running: Yes、Slave_SQL_Running: Yes表示成功👿 如果是发现Slave_IO为No,Slave_SQL为Yes 🚡 可能是 master_log_file文件名没写对,比如多了一个空格啥的
-  主从测试复制 - 主机新建库、使用库、新建表、插入数据
- 从机使用库、查看记录
 结果表明:主机创建的表和数据,从机可以看到。 
 
-  
 
-  
-  安装redis集群:cluster(集群)模式-docker版,哈希槽分区进行亿级数据存储 🦊 面试题:1-2亿数据需要缓存,请问如何设计这个存储案例 🏹 回答:单机单台100%不可能,肯定是分布式存储,用redis如何落地?(上述问题阿里P6-P7工程案例和场景设计类必考题目,一般业界有3种解决方案) -  哈希取余分区 2亿条记录就是2亿个kv,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式: h a s h ( k e y ) % N hash(key)\%N hash(key)%N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。  优点:简单粗暴,直接有效。只需要预估好数据规划好节点,就能保证一段时间的数据支撑。使用HASH算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。 缺点:扩缩容时比较麻烦,不管缩容还是扩容,都会比较麻烦,因为一旦机器数量发生了变化,原本key的映射关系就要全部重新计算,如果需要弹性扩容或者故障停机的情况下,原来的取模公式就会发生变化,这时取余的结果就会发生很大变化,所以会导致全部数据要重新洗牌。 
-  一致性哈希算法分区 -  是什么:这个算法在1997年就被提出了,设计的目标就是为了解决分布式缓存数据变动和映射的问题。当服务器的个数发生变动时,尽量减少影响客户端到服务器的映射关系。 
-  能干嘛:当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系。 
-  3大步骤: -  算法构建一致性哈希环 一致性哈希算法必然有个hash函数,并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间 [0, 2 ^ 32 -1],这是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它在逻辑上形成了一个环形空间。它也是按照使用取模的方法,上一种方式的节点取模法是对节点数量进行取模。 而一致性哈希算法是对2^32取模,简单来说,一致性哈希算法将整个哈希值空间组织成一个虚拟的圆环,比如某哈希函数H的值空间为 0 ~ 2^32-1 (即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按照顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2,3,4、… 直到 2^32-1,也就是说0点左侧的第一个点代表2^32-1,0和2^32-1在零点中方向重合,我们把这个有2^32个点组成的圆环称为哈希环。 
-  服务器IP节点映射 将集群中各个机器的IP映射到环上的某一个位置,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定自己在环上的位置。假如4个结点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:  
-  key落到服务器的落键规则 当我们需要存储kv键值对时,首先计算出key的hash值, hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。 
 
-  
-  目的:为了在节点数目发生改变时尽可能少迁移数据。将所有的存储节点排列在相接的hash环上,每个key在计算hash之后,会按照顺时针找到的存储节点存放。而当有节点加入或者退出时候,仅影响该节点在hash环上的顺时针相邻的后续节点。 
-  优点:解决了容错性和扩展性的问题 加入和删除节点只会影响哈希环中顺时针方向相邻的节点,对其他节点无影响。 
-  缺点:解决不了数据倾斜的问题 数据的分布和节点的位置有关,因为这些节点不是均匀地分布在哈希环上的,所以数据进行存储时候达不到均匀分布效果。可能就出现了数据倾斜问题。  
 
-  
-  哈希槽分区 -  是什么:因为一致性哈希算法的数据倾斜问题,为了解决这个问题。哈希槽实质上就是一个数组,数组[0,2^14-1]形成hash slot空间。 
-  能干什么:解决均匀分配的问题,在数据和节点之间又加入了一层,把这一层称为哈希槽(slot),用于管理数据和节点之间的关系。现在就相当于节点上放的是槽,槽里面上的是数据。  槽解决的是粒度问题,相当于是把粒度变大了。这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所对应槽,便于数据分配。 
-  多少个hash槽 一个集群中只能有16384个槽。编号为0–16383(0-2^14-1),这些槽会分配给集群中所有的主节点,分配策略没有要求。可以指定哪个编号的槽分配给哪个主节点。集群会记录节点和槽对应的关系。解决了节点和槽的关系后,接下来就需要对key进行hash值计算,然后对16384取余。余数是几,那么key就落入到对应的槽中。 slot=CRC16(key)%16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容器,这样数据迁移问题就解决了。❓ 为什么redis集群最大的槽数是16384个? -  Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有 16384个哈希槽,每个 key 通过CRC16校验后对 16384 取模来决定放置哪个槽,集群的每个节点负责一部分 hash 槽。
-  CRC16算法产生的hash值有16bit,该算法可以产生2^16=65536个值。如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大。redis的集群主节点数量基本不可能超过1000个。对于节点数在1000以内的redis cluster集群,16384个槽位够用了。没有必要拓展到65536个。 
 
-  
-  哈希槽计算 Redis集群中内置了16384个哈希槽,Redis会根据节点数量大致均等地将hash槽映射到不同的节点。当需要在集群中放置一个k-v时,Redis先对key使用crc16算法算出一个结果,然后把结果对16834求余数。这样每个key都会对应一个编号,也就会映射到某个节点上。如下图: 简单来说:key -> crc16 -> %16384取余 -> 根据槽-redis服务器,找到对应存储位置  
 
-  
 
-  
-  3主3从redis集群扩缩配置案例架构说明 -  redis集群配置  -  关闭防火墙+启动docker后台服务: systemctl start docker
-  新建6个docker容器实例: docker run -d --name redis-node-1 --net host --privileged=true -v /data/redis/share/redis-node-1:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6381 docker run -d --name redis-node-2 --net host --privileged=true -v /data/redis/share/redis-node-2:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6382 docker run -d --name redis-node-3 --net host --privileged=true -v /data/redis/share/redis-node-3:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6383 docker run -d --name redis-node-4 --net host --privileged=true -v /data/redis/share/redis-node-4:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6384 docker run -d --name redis-node-5 --net host --privileged=true -v /data/redis/share/redis-node-5:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6385 docker run -d --name redis-node-6 --net host --privileged=true -v /data/redis/share/redis-node-6:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6386注意:别瞎复制,要改3处,name、v、port。否则会报错: Sorry, the cluster configuration file nodes.conf is already used by a different Redis Cluster node. Please make sure that different nodes use different cluster configuration files. - docker run:创建并运行docker容器实例
- --name redis-node-1:容器名字
- --net host:使用宿主机的IP和端口,默认
- --privileged=true:获取宿主机root用户权限
- -v /data/redis/share/redis-node-1:/data:容器卷,宿主机地址:docker内部地址
- redis:6.0.8:redis镜像和版本号
- --cluster-enabled yes:开启redis集群
- --appendonly yes:开启持久化
- --port 6386:redis端口号
 
-  进入容器 redis-node-1并为6台机器构建集群关系,这里的地址要改成自己的真实IP地址,运行后会自动进行两两配对redis-cli --cluster create 172.24.113.146:6381 172.24.113.146:6382 172.24.113.146:6383 172.24.113.146:6384 172.24.113.146:6385 172.24.113.146:6386 --cluster-replicas 1-  --cluster-replicas 1:表示为每个master创建一个slave节点
-  从下图结果也可以看出/证明:一共是16383个槽,这里分成了三份,并且分别建立映射关系 
 Master[0] -> Slots 0 - 5460 Master[1] -> Slots 5461 - 10922 Master[2] -> Slots 10923 - 16383 Adding replica 172.24.113.146:6385 to 172.24.113.146:6381 Adding replica 172.24.113.146:6386 to 172.24.113.146:6382 Adding replica 172.24.113.146:6384 to 172.24.113.146:6383 
-  
-  连接进入6381作为切入点,查看集群状态: redis-cli -p 6381、cluster info、cluster nodes 
 
-  
-  主从容错切换迁移 -  数据读写存储 -  启动6机构成的集群并通过exec进入 
-  对6381新增两个key (base) root@L2010403019000# docker exec -it redis-node-1 bash root@L2010403019000:/data# redis-cli -p 6381 127.0.0.1:6381> set k1 v1 (error) MOVED 12706 172.24.113.146:6383 127.0.0.1:6381> get k1 (error) MOVED 12706 172.24.113.146:6383 127.0.0.1:6381> set k2 v2 OK 127.0.0.1:6381> set k3 v3 OK 127.0.0.1:6381> set k4 v4 (error) MOVED 8455 172.24.113.146:6382 127.0.0.1:6381>要用集群的命令,单机版的命令有些key存不进去 
-  防止路由失效加参数 -c并新增两个key会根据存储的槽位自动跳转到对应的机器 root@L2010403019000:/data# redis-cli -p 6381 -c 127.0.0.1:6381> set k1 v1 -> Redirected to slot [12706] located at 172.24.113.146:6383 OK 172.24.113.146:6383>
-  查看集群信息: redis-cli --cluster check xxx:6381 
 
-  
-  容错切换迁移 -  主6381和从机切换,先停止主机6381 
-  再次查看集群信息,6381的主机挂了,6384上位成了master  
-  再启动6381,6381会变成从机slave,类似的再停6384,6381会成为master  
 
-  
 
-  
-  主从扩容 -  需求分析:三主三从到四主四从,关键在于哈希槽的重新分配    
-  新建6387、6388两个节点+新建后启动+查看是否8节点 docker run -d --name redis-node-7 --net host --privileged=true -v /data/redis/share/redis-node-7:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6387 docker run -d --name redis-node-8 --net host --privileged=true -v /data/redis/share/redis-node-8:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6388
-  进入6387容器实例内部,将新增的6387节点(空槽号)作为master节点加入原集群 docker exec -it redis-node-7 bash # 将新的6387作为master节点加入集群 redis-cli --cluster add-node xxx:6387 xxx:6381 # - 6387就是要作为master新增节点 # - 6381就是原来集群节点里面的领路人,相当于6387拜拜6381的码头从而找到组织加入集群 
-  检查集群情况第1次: redis-cli --cluster check 172.24.113.146:6381,可以看到6387已经整上了Master,但是没有槽位 
-  重新分派槽号: redis-cli --cluster reshard 172.24.113.146:6381 - 4096:16384/4,四个master每个拥有4096个槽
- node id:谁接收新分配的槽,6387的id
- all:全部洗牌
 
-  检查集群情况第2次: redis-cli --cluster check 172.24.113.146:6381,每个node分一部分给新的节点 -  为什么6387是3个新的区间,以前的还是连续? 重新分配成本太高,所以前3个节点各自匀出来一部分,从 6381/6382/6383 三个旧节点分别匀出1364个坑位给新节点6387 已经有的key存了,再调整太麻烦了,每个node匀一点 
 
-  
-  为主节点6387分配从节点6388: redis-cli --cluster add-node 172.24.113.146:6388 172.24.113.146:6387 --cluster-slave --cluster-master-id 23cbf2d9015841575a35df2e890821b1a13f075b 
-  检查集群情况第3次: redis-cli --cluster check 172.24.113.146:6383 
 
-  
-  主从缩容 -  需求分析:(目的:6387和6388下线) - 先清除从节点6388
- 清出来的槽号重新分配
- 再删除6387
- 恢复成3主3从
  
-  检查集群情况1,获得6388节点ID: redis-cli --cluster check 172.24.113.146:6381 
-  将6388删除,从集群中将4号从节点6388删除: redis-cli --cluster del-node 172.24.113.146:6388 d9dfd3dd02ffd346494a48e4db26a789de471df0检查一下发现,6388被删除了,只生下了7台机器: redis-cli --cluster check 172.24.113.146:6381 
-  将6387的槽号清空,重新分配(这里将清出来的槽号都给6381): redis-cli --cluster reshard 172.24.113.146:6381这里要把6397的槽都给6381,因此后续参数分别是: - 4096
- 6381的id
- 6387的id
- done
  check一下可以看到,6387的4096全部给6381了  
-  将6387从集群中删除: redis-cli --cluster del-node 节点ip:端口 节点id 可以看到,6387的从点已经被删除了,此外三个Master槽分别是:8192、4096、4096 
 
-  
 
-  
10. Dockerfile解析
-  是什么: -  Dockerfile是用来构建Docker镜像的文本文件,是由一条条构建镜像所需的指令和参数构成的脚本。 
-  解决什么问题:commit很麻烦,每次都要io。能不能一次性搞定?能不能给个清单,后续每次加入新的功能,直接在清单中写好。  
-  官网:https://docs.docker.com/engine/reference/builder/ 
-  构建三步骤: - 编写Dockerfile文件
- docker build命令构建镜像
- docker run依照镜像运行容器实例
 
 
-  
-  Dockerfile构建过程解析 -  Dockerfile内容基础知识 - 每条保留字指令都 必须为大写字母 且后面要跟随至少一个参数
- 指令按照从上到下,顺序执行
- # 表示注释
- 每条指令都会创建一个新的镜像层并对镜像进行提交
 
-  Docker执行Dockerfile的大致流程 - docker从基础镜像运行一个容器
- 执行一条指令并对容器作出修改
- 执行类似docker commit的操作提交一个新的镜像层
- docker再基于刚提交的镜像运行一个新容器
- 执行dockerfile中的下一条指令知道所有指令都完成
 
-  总结:从应用软件的角度来看,Dockerfile、Docker镜像与Docker容器分别代表软件的三个不同阶段: - Dockerfile是软件的原材料;
- Docker镜像是软件的交付品;
- Docker容器则可以认为是软件镜像的运行态,也即依照镜像运行的容器实例。
 Dockerfile面向开发,Docker镜像成为交付标准,Docker容器则涉及部署与运维,三者缺一不可,合力充当Docker体系的基石。  - Dockerfile:需要定义一个Dockerfile,Dockerfile定义了进程需要的一切东西。Dockerfile涉及的内容包括执行代码或者是文件、环境变量、依赖包、运行时环境、动态链接库、操作系统的发行版、服务进程和内核进程(当应用进程需要和系统服务和内核进程打交道,这时需要考虑如何设计namespace的权限控制)等等;
- Docker镜像:在用Dockerfile定义一个文件之后,docker build时会产生一个Docker镜像,当运行Docker镜像时会真正开始提供服务;
- Docker容器:容器是直接提供服务的。
 
 
-  
-  Dockerfile常用保留字指令  -  FROM:基本出现在第一行,代表新构建的镜像来在于哪儿,指定一个已经存在的镜像作为模板 
-  MAINTAINER:镜像维护者的姓名和邮箱地址 
-  RUN: - 容器构建时需要运行的命令
- 两种格式:都可以,看你个人选择 
      - shell:类似在终端运行RUN yum -y install vim
- exec:RUN ["./test.php", "dev", "offline"]类似于RUN ./test.php dev offline
 
- shell:类似在终端运行
- RUN是在docker build时运行
 
-  EXPOSE:当前容器对外暴露出的端口,类似p、P对端口的映射 
-  WORKDIR:指定在创建容器后,终端默认登录进来的工作目录 ,一个落脚点(指定之后,后续run镜像的时候,进去的目录就是这个目录) 
-  USER:指定该镜像以什么样的用户去执行,如果都不指定,默认是root(不考虑在镜像里面搞权限没什么意义) 
-  ENV:用来在构建镜像过程中设置环境变量 比如 ENV MY_PATH /usr/mytest,这个环境变量可以在后续的任何RUN指令中使用,这就如同在命令前指定了环境变量前缀一样,也可以在其它指令中直接使用这些环境变量,比如WORKDIR $MY_PATH
-  ⭐️ ADD:(一般用这个,比COPY强大些)将宿主机目录下的文件拷贝进镜像且会自动处理URL和解压tar压缩包 
-  COPY:类似ADD,拷贝文件和目录到镜像中。将从构建上下文目录中<源路径>的文件/目录复制到新的一层的镜像内的<目标路径>位置 - COPY src dest
- COPY ["src", "dest"]
- 其中,src为源文件、源路径;dest为容器内的指定路径,该路径不用事先建好
 
-  VOLUME:容器数据卷,用于数据保存和持久化工作 
-  CMD:指定容器启动后要干的事情 - CMD指令的格式和- RUN相似,也是两种格式:- shell格式:- CMD <命令>
- exec格式:- CMD ["可执行文件", "参数1", "参数2", ...]
- 参数列表格式:在指定了 ENTRYPOINT指令后,用CMD指定具体的参数
 
- 注意: 
      - Dockerfile中可以有多个CMD命令,但是只有最后一个生效,CMD会被docker run之后的参数替换(简单来说,docker run -it ... bash,这行因为加了bash,因此相当于加了一行CMD ["bash"],那么原来最后一行CMD就运行不了)
 
- Dockerfile中可以有多个CMD命令,但是只有最后一个生效,CMD会被docker run之后的参数替换(简单来说,
- 和RUN的区别 
      - CMD是在docker run时运行
- RUN时在docker build时运行
 
 
-  ENTRYPOINT:也是用来指定一个容器启动时要运行的命令,类似CMD命令。但是ENTRYPOINT不会被docker run后面的命令覆盖,而且这些命令行参数会被当作参数送给ENTRYPOINT指令指定的程序 - 命令格式:ENTRYPOINT ["执行的命令", "参数1", "参数2"...]
- ENTRYPOINT可以和CMD一起用,
 一般是变参才会使用CMD,这里的CMD等于是在给ENTRYPOINT传参
- 当指定了ENTRYPOINT后,CMD的含义就发生了变化,不再是直接运行其命令而是将CMD的内容作为参数传递给ENTRYPOINT指令,他两个组合会变成 <ENTRYPOINT> "<CMD>"
- 这里可以简单理解为,结合时候的时候,cmd里的参数是默认参数,docker run的时候不指定就是用默认的cmd里的,如果指定了就用指定的
  
- 命令格式:
 
-  
-  案例 -  自定义镜像mycentosjava8 -  要求 - Centos7镜像具备vim+ifconfig+jdk8
- jdk下载镜像地址: 
        - 官网:https://www.oracle.com/java/technologies/downloads/#java8
- 镜像:https://mirrors.yangxingzhen.com/jdk/
 
 
-  编写:准备编写Dockerfile文件,大写字母D FROM centos MAINTAINER litian<litian@whchem.com> ENV MYPATH /usr/local WORKDIR $MYPATH # 配置源 RUN cd /etc/yum.repos.d/ RUN sed -i 's/mirrorlist/#mirrorlist/g' /etc/yum.repos.d/CentOS-* RUN sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-* RUN yum makecache RUN yum update -y # 安装vim编译器 RUN yum -y install vim # 安装ifconfig命令查看网络IP RUN yum -y install net-tools # 安装java8以及lib库 RUN yum -y install glibc.i686 RUN mkdir /usr/local/java # ADD 是相对路径jar。把jdk的gz添加到容器中,安装包必须要和Dockerfile文件在同一位置 ADD jdk-8u221-linux-x64.tar.gz /usr/local/java # 配置java环境变量 ENV JAVA_HOME /usr/local/java/jdk1.8.0_221 ENV JRE_HOME $JAVA_HOME/jre ENV CLASSPATH $JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib:$CLASSPATH ENV PATH $JAVA_HOME/bin:$PATH EXPOSE 80 CMD echo $MYPATH CMD echo "success.......ok" CMD /bin/bashhttps://blog.csdn.net/SC_CSDN_L/article/details/140356006 注意:关于yum install,运行到这儿就没忘了,所以我们在Dockerfile中还要加入修改yum源的步骤: # 在新镜像中运行命令,切换到 `/etc/yum.repos.d/` 目录 RUN cd /etc/yum.repos.d/ # 使用sed命令在 `/etc/yum.repos.d/CentOS-*` 文件中,将所有包含 `mirrorlist` 的行替换为 `#mirrorlist`。注释掉原有的镜像源地址。 RUN sed -i 's/mirrorlist/#mirrorlist/g' /etc/yum.repos.d/CentOS-* # 使用sed命令在 `/etc/yum.repos.d/CentOS-*` 文件中,将 `#baseurl=http://mirror.centos.org` 替换为 `baseurl=http://vault.centos.org`。将镜像源地址改为CentOS Vault站点,用于访问旧版本软件包的站点。 RUN sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-* # 更新YUM缓存,以便系统可以访问最新的软件包信息。 RUN yum makecache # 执行完整的系统更新,安装所有可用更新的软件包。 RUN yum update -y
-  构建: docker build -t centosjava8:1.5 .,注意这个点,是指当前目录构建,不要忘了
-  运行: docker run -it centosjava8:1.5 bash,vim、ifconfig、java都可以用了 
 
-  
-  虚悬镜像 -  是什么:仓库名、标签名都是 <none>的镜像,俗称dangling image
-  Dockerfile写一个: -  vim Dockerfile FROM ubuntu CMD echo 'action is success'
-  docker build . 
 
-  
-  查看: docker image ls -f dangling=true
-  删除: docker image prune
 
-  
 
-  
11. Docker微服务实战
一切在云端,处处皆镜像~
-  通过IDEA新建一个普通微服务模块 - 建Module,docker_boot
- 改POM
- 写YML
- 主启动
- 业务类
 
-  通过dockerfile发布微服务部署到dockerfile容器 -  IDEA工具里面搞定微服务jar包 
-  编写Dockerfile FROM java:8 MAINTAINER test VOLUME /tmp ADD docker_boot-0.0.1-SNAPSHOT.jar test.jar RUN bash -c 'tourch /test.jar' ENTRYPOINT ["java", "- jar", "/test.jar"] EXPOSE 6001
-  构建镜像: docker build -t test:1.6 .
-  运行容器: docker run -d -p 6001:6001 test:1.6
-  访问测试 
 
-  
12. Docker网络
-  是什么: -  docker不启动,默认网络情况 - ens33
- lo
- virbr0:在CentOS7的安装过程中如果有选择相关虚拟化的的服务安装系统后,启动网卡时会发现有一个以网桥连接的私网地址的virbr0网卡(virbr0网卡:它还有一个固定的默认IP地址192.168.122.1),是做虚拟机网桥的使用的,其作用是为连接其上的虚机网卡提供 NAT访问外网的功能。
 
-  docker启动后,网络情况 -  查看docker网络情况: docker network ls
-  默认创建的3大网络模式  
 
-  
 
-  
-  常用基本命令: - 创建:docker network create mynet
- 删除:docker network rm mynet
- 查看:docker network inspect bridge
 
- 创建:
-  能干嘛 - 容器间的互联和通信以及端口映射
- 容器IP变动的时候可以通过服务名直接网络通信而不受到影响
 
-  网络模式 -  总体介绍 网络模式 简介 bridge 为每一个容器分配、设置IP等,并将容器连接到一个 docker0虚拟网桥,默认为该模式。host 容器将不会虚拟出自己的网卡,配置自己的Ip等,而是使用宿主机的IP和端口。 none 容器有独立的Network namespace,但并没有对其进行任何网络设置,如分配veth pari和网桥连接、IP等。 container 新创建的容器不会创建自己的网卡和配置自己的IP,而是和一个指定的容器共享IP、端口范围等。 bridge模式:使用 --network bridge指定,默认使用docker0host模式:使用 --network host指定none模式:使用 --network none指定container模式:使用 --network container:NAME或者容器ID指定
-  容器实例默认网络IP生产规则:docker容器内部的IP是有可能会发生改变的 
-  案例说明: -  bridge: -  是什么 Docker服务默认会创建一个docker0网桥(其上有一个docker0内部接口),该桥接网络的名称为docker0,它在内核层连通了其他的物理或虚拟网卡,这就将所有容器和本地主机都放到同一个物理网络。Docker默认指定了docker0接口的IP地址和子网掩码,让主机和容器之间可以通过网桥相互通信。 
-  案例 -  Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0),Docker启动一个容器时会根据Docker网桥的网段分配给容器一个IP地址,称为Container-IP,同时Docker网桥是每个容器的默认网关。因为在同一宿主机内的容器都接入同一个网桥,这样容器之间就能够通过容器的Container-IP直接通信。 
-  docker run的时候,没有指定network的话默认使用的网桥模式就是bridge,使用的就是docker0。在宿主机ifconfig,就可以看到docker0和自己create的network eth0,eth1,eth2……代表网卡一,网卡二,网卡三……,lo代表127.0.0.1,即localhost,inet addr用来表示网卡的IP地址 
-  网桥docker0创建一对对等虚拟设备接口:一个叫veth,另一个叫eth0,成对匹配。 - 整个宿主机的网桥模式都是docker0,类似一个交换机有一堆接口,每个接口叫veth,在本地主机和容器内分别创建一个虚拟接口,并让他们彼此联通(这样的一对接口叫 veth pair);
- 每个容器实例内部也有一块网卡,每个接口叫eth0;
- docker0上面的每个veth匹配某个容器实例内部的eth0,两两配对,一一匹配。
 通过上述,将宿主机上的所有容器都连接到这个内部网络上,两个容器在同一个网络下,会从这个网关下各自拿到分配的ip,此时两个容器的网络是互通的。  
-  代码验证 -  创建两个tomcat的容器: docker run -d -p 8081:8080 --name tomcat81 billygoo/tomcat8-jdk8docker run -d -p 8082:8080 --name tomcat82 billygoo/tomcat8-jdk8
-  ip addr:查看宿主机地址 
-  查看tomcat81的地址  这里的 5: eth0@if6跟宿主机的6: vetheb86a37@if5对应,即eth0跟veth对应
-  同样的,查看tomcat82的地址  7: eth0@if8跟宿主机的8: veth4b8beaa@if7对应
 
-  
 
-  
 
-  
-  host -  直接使用宿主机的IP地址与外界进行通信,不再需要额外进行NAT转换。 
-  容器将不会获得一个独立的Network Namespace,而是和宿主机共用一个Network Namespace。容器将不会虚拟出自己的网卡而是使用宿主机的IP和端口。  
-  案例: -  docker run -d -p 8083:8080 --network host --name tomcat83 billygoo/tomcat8-jdkWARNING: Published ports are discarded when using host network mode 5973d8b28d71d8172b5097b98a9d6be5806725407aa91ac58eb36be3f8c58ec1会出现警告的内容,且 docker ps中可以看到 PORTS 那一栏为空。这是因为指定--network host之后,还指定-p映射端口将毫无作用,因为端口号会以主机端口号为主,重复时则递增。🤞 解决:使用其他网络模式,或者直接无视警告。 ✔️ 正确:在用host模式的时候,不要指定端口映射。 
-  用 ip addr可以看到没有之前的配对显示了,用docker inspect 容器ID可以看到容器实例内部的网关和地址的值为空字符串。
-  ❓ 没有设置-p的端口映射了,如何访问启动的tomcat83? 直接: http://宿主机IP:8080/在CentOs里面用默认的浏览器访问容器内的tomcat83看到访问成功,因为此时容器的IP借用主机的. 
 所以容器共享宿主机网络IP,这样的好处是外部主机与容器可以直接通信。
 
-  
 
-  
-  none - 禁用网络功能,只有lo标识(就是127.0.0.1表示本地回环)
- 需要我们自己为Docker容器添加网络、配置IP等基本不用
 
-  container -  新建的容器和已经存在的一个容器共享一个网络ip配置而不是和宿主机共享。新创建的容器不会创建自己的网卡,配置自己的IP,而是和一个指定的容器共享IP、端口范围等。同样,两个容器除了网络方面,其他的如文件系统、进程列表等还是隔离的。  
-  ❗️ 坑:以tomcat测试会报错,对外发布的端口和这种网络模式是不匹配的。 
-  验证可得: - 两个容器内 ip addr显示的eth0完全一样
- 关闭对应的容器之后,这种网络模式的容器的 eth0 将会消失
 
- 两个容器内 
 
-  
-  自定义网络 -  过时的link,可以通过自定义网络完成替代 
-  问题:用原来的方式,按ip地址可以ping通,但是按照服务名无法ping通, ping tomcat82
-  自定义网络怎么解决这个问题 -  自定义桥接网络:自定义网络默认使用的是桥接网络bridge 
-  新建自定义网络: docker network create lt_net
-  以自定义网络启动tomcat: docker run -d -p 8081:8080 --network lt_net --name tomcat81 billygoo/tomcat8-jdk8docker run -d -p 8082:8080 --network lt_net --name tomcat82 billygoo/tomcat8-jdk8
-  此时可以ping通服务名: ping tomcat82 
 
-  
-  结论:自定义网络本身就维护好了主机名和ip的对应关系(ip和域名都能通) 
 
-  
 
-  
 
-  
13. Docker-compose容器编排
一键部署,一键启停。少量容器编排可以,大量就需要k8s了
-  是什么:Docker-Compose是Docker官方的开源项目,负责实现对Docker容器集群的快速编排。 Docker-Compose是Docker公司推出的一个开源工具软件,可以管理多个 Docker容器组成一个应用。用户需要定义一个YAML格式的配置文件 docker-compose.yml,写好多个容器之间的调用关系。然后,只要一个命令,就能同时启动/关闭这些容器(或者说能实现对Docker容器集群的快速管理,编排) 
-  能干嘛: Docker建议我们每一个容器中只运行一个服务,因为 Docker 容器本身占用资源极少,所以最好是将每个服务单独的分割开来。但是这样我们又面临了一个问题: ❓ 如果需要同时部署好多个服务,难道要每个服务单独写 Dockerfile 然后再构建镜像,构建容器?非常麻烦。 - 所以 Docker 官方给我们提供了 Docker-compose 多服务部署的工具。例如要实现一个 Web 微服务项目,除了 Web 服务容器本身,往往还需要再加上后端的数据库 MySQL 容器,Redis 服务器,注册中心 eureka,甚至还包括负载均衡容器等等…
- Compose 允许用户通过一个单独的 docker-compose.yml 模板文件(YAML 格式)来定义一组相关联的应用容器为一个项目(project)。
 可以很容易地用一个配置文件定义一个多容器的应用,然后使用一条指令安装这个应用的所有依赖,完成构建。Docker-Compose 解决了容器与容器之间如何管理编排的问题。 
-  去哪下: -  官网:https://docs.docker.com/reference/compose-file/legacy-versions/ 
-  官网下载:https://docs.docker.com/compose/install/ 
-  下载和安装:docker-compose的具体安装可以看我之前研究的攻略:https://blog.csdn.net/qq_21579045/article/details/141718124 -  其实就是先从github上拉取docker-compose,保存到 /usr/local/bin/docker-compse路径:curl -SL https://github.com/docker/compose/releases/download/v2.30.1/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose
-  然后赋予执行权限: chmod +x /usr/local/bin/docker-compose
-  查看搞好了没: docker-compose --version
 
-  
-  卸载: sudo rm /usr/local/bin/docker-compose,直接把拷贝过去的 docker-compose 删了就行
 
-  
-  Compose核心概念 - 一个文件:docker_compose.yml
- 两大要素: 
    - 服务(service):一个个应用容器实例,比如订单微服务、库存微服务、mysql容器、nginx容器或者redis容器
- 工程(project):由一组关联的应用容器组成的一个 完整业务单元,在docker-compose.yml文件中定义
 
 
- 一个文件:
-  Compose使用的三个步骤 - 编写Dockerfile定义各个微服务应用并构建出对应的镜像文件
- 使用docker-compose.yml定义一个完整的业务单元,安排好整体应用中的各个容器服务
- 最后,执行docker-compose up命令来启动并运行整个应用程序,完成一键部署上线(等价于一次性运行了多个 docker run命令)
 
-  Compose常用命令  
-  Compose编排微服务 -  改造升级微服务工程docker_boot 
-  不用compose编排服务有什么问题? -  单独的mysql容器实例 - 新建mysql容器实例
- 进入mysql容器实例并新建库+新建表
 docker run -p 3306:3306 --name mysql57 --privileged=true -v /mysql/conf:/etc/mysql/conf.d -v /mysql/logs:/logs -v /mysql/data:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=123456 -d mysql:5.7- 我用windows的docker windows:docker run -p 3306:3306 --name huazi-mysql --privileged=true -v D:\containers\mysql\conf:/etc/mysql/conf.d -v D:\containers\mysql\logs:/logs -v D:\cont ainers\mysql\data:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=root -d mysql:5.7
 
-  单独的redis容器实例 docker run -p 6379:6379 --name redis608 --privileged=true -v /redis/redis.conf:/etc/redis/redis.conf -v /redis/data:/data -d redis:6.0.8 redis-server /etc/redis/redis.conf- 我用windos的docker windows:docker run -p 6379:6379 --name huazi-redis --privileged -v D:\containers\redis\redis.conf:/etc/redis/redis.conf -v D:\containers\redis\data:/data -d re dis:6.0.8 redis-server /etc/redis/redis.conf
 
- 我用windos的docker windows:
-  微服务工程 
-  上面三个容器实例依次顺序启动成功 
-  但是有哪些问题: - 先后顺序要求固定,先mysql+redis,才能微服务访问成功
- 多个run命令
- 容器间的启停或宕机,有可能导致IP地址对应的容器实例变化,映射出错,要么生产IP写死(可以但是不推荐),要么通过服务调用
 
 
-  
-  使用compose编排微服务 -  服务编排,一套带走,安排 
-  编写 docker-compse.yml文件
-  二次修改微服务工程 docker_boot 
-  在yml文件路径执行 docker-compose up或者docker-compose up -d(后台启动)
-  docker-compose config -q:检查配置文件是否有问题,没有输出就是没有问题
-  在 yml 的最后写网络配置,docker-compose会自动创建 路径_lt_net的docker网络,类似的创建服务的时候同样也会加上路径前缀,并不影响使用。如果yml中给服务起了名字,则会使用名字,而不是自动生成加上路径前缀的容器名networks: lt_net
-  进入容器,建表建库,测试通过 
-  关停: docker-compose stop
 
-  
 
-  
14. Docker轻量级可视化工具Portainer
-  是什么:是一款轻量级的应用,它提供了图形化的界面,用于方便的管理Docker环境,包括单机环境和集群环境。(当然了,集群还是选k8s) 
-  安装: -  官网:https://www.portainer.io/ 
-  下载:https://docs.portainer.io/start/install-ce/server/docker/linux 
-  步骤: -  docker命令安装: docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:2.21.4- --restart=always:docker重启了,该容器实例也会跟着重启
 我用windos的docker windows:docker run -d -p 8000:8000 -p 9000:9000 --name portainer --restart=always -v D:\containers\portainer\docker.sock:/var/run/docker.sock -v D:\containers\ portainer\data:/data portainer/portainer
-  第一次登录需创建admin,访问地址:IP:9000 ⚠️ 注意:这样创建不对,无法检测到本地的docker容器 如果使用windows的docker desktop还是得老老实实按官网给的方法来:https://docs.portainer.io/start/install-ce/server/docker/wsl - First, create the volume that Portainer Server will use to store its database:docker volume create portainer_data
- Then, download and install the Portainer Server container: docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer
 可以发现当前版本 2.21.4 端口不是9000了,而是 9443,此外访问的时候要用https: https://localhost:9443/
- First, create the volume that Portainer Server will use to store its database:
-  设置admin用户和密码后首次登录 
-  选择local选项卡后本地docker详细信息展示 这样一进来就能看到,已经检测到本地的docker服务啦   这里面的stack就是docker-compose的编排情况 
 
-  
-  图像展示对应的命令: docker system df
 
-  
-  登录并演示介绍常用case  
15. Docker容器监控之CAdvisor+InfluxDB+Granfana
比起上面的轻量级的Portainer,这个是重量级的
-  原生命令 -  操作: docker stats 
-  问题:通过 docker stats命令可以很方便的看到当前宿主机上所有容器的CPU,内存以及网络流量等数据,一般小公司够用了。但是,docker stats统计结果只能是当前宿主机的全部容器,资料是实时的,没有地方存储、没有健康指标过线预警等功能。
 
-  
-  是什么:容器监控三剑客 -  一句话:CAdvisor监控收集+InfluxDB存储数据+Granfana展示图表  
-  CAdvisor -  CAdvisor是一个容器资源监控工具,包括容器的内存、CPU、网络I0、磁盘IO等监控,同时提供了一个WEB页面用于查看容器的实时运行状态。CAdvisor默认存储2分钟的数据,而且只是针对单物理机。 
-  不过,CAdvisor提供了很多数据集成接口,支持lnfluxDB、Redis、Kafka、Elasticsearch等集成,可以加上对应配置将监控数据发往这些数据库存储起来。 
-  CAdvisor功能主要有两点: - 展示Host和容器两个层次的监控数据;
- 展示历史变化数据。
 
 
-  
-  InfluxDB - InfluxDB是用Go语言编写的一个开源分布式时序、事件和指标数据库,无需外部依赖。
- CAdvisor默认只在本机保存最近2分钟的数据,为了持久化存储数据和统一收集展示监控数据,需要将数据存储到InfluxDB中。InfluxDB是一个时序数据库,专门用于存储时序相关数据,很适合存储CAdvisor的数据。而且,CAdvisor本身已经提供了InfluxDB的集成方法,在启动容器时指定配置即可。
- InfluxDB主要功能: 
      - 基于时间序列,支持与时间有关的相关函数(如最大、最小、求和等);
- 可度量性:你可以实时对大量数据进行计算;
- 基于事件:它支持任意的事件数据。
 
 
-  Granfana - Grafana是一个开源的数据监控分析可视化平台,支持多种数据源配置(支持的数据源包括InfluxDB、MySQL、Elasticsearch、OpenTSDB、Graphite等)和丰富的插件及模板功能,支持图表权限控制和报警。
- Granfana主要特性: 
      - 灵活丰富的图形化选项
- 可以混合多种风格
- 支持白天和夜间模式
- 多个数据源
 
 
  
-  
-  compose容器编排,一套带走 -  新建目录: mkdir /mydocker/cig
-  新建3件套组合的 docker-compose.yml-  编辑内容: # 新版docker-compose不需要定义版本了 # version: '3.1' volumes: grafana_data: {} services: influxdb: # tutum/influxdb 相比influxdb多了web可视化视图。但是该镜像已被标记为已过时 image: tutum/influxdb:0.9 restart: always environment: - PRE_CREATE_DB=cadvisor ports: - "8083:8083" # 数据库web可视化页面端口 - "8086:8086" # 数据库端口 volumes: - ./data/influxdb:/data cadvisor: image: google/cadvisor:v0.32.0 links: - influxdb:influxsrv command: - storage_driver=influxdb - storage_driver_db=cadvisor - storage_driver_host=influxsrv:8086 restart: always ports: - "8080:8080" volumes: - /:/rootfs:ro - /var/run:/var/run:rw - /sys:/sys:ro - /var/lib/docker/:/var/lib/docker:ro grafana: image: grafana/grafana:8.5.2 user: '104' restart: always links: - influxdb:influxsrv ports: - "3000:3000" volumes: - grafana_data:/var/lib/grafana environment: - HTTP_USER=admin - HTTP_PASS=admin - INFLUXDB_HOST=influxsrv - INFLUXDB_PORT=8086
-  检查语法: docker-compse config -q,没有报错就是没有问题
-  启动docker-compose文件: docker-compose up
-  查看三个服务器是否启动 -  浏览cAdvisor收集服务, http://ip:8080/,第一次访问的比较慢,稍微一等 
-  浏览influxdb存储服务, http://ip:8083/ 
-  浏览grafana展现服务, http://ip:3000/,默认账户密码都是admin  配置步骤: -  配置数据源:用服务名而不是ip,用户名和密码默认是root   
-  保存并测试,看到 ✔️ 就成功啦  
-  配置面板  
 
-  
 
-  
 
-  
 
-  
- ☁️ 我的CSDN:https://blog.csdn.net/qq_21579045/
- ❄️ 我的博客园:https://www.cnblogs.com/lyjun/
- ☀️ 我的Github:https://github.com/TinyHandsome/
- 🌈 我的bilibili:https://space.bilibili.com/8182822/
- 🍅 我的知乎:https://www.zhihu.com/people/lyjun_/
- 🐧 粉丝交流群:1060163543,神秘暗号:为干饭而来
碌碌谋生,谋其所爱。🌊 @李英俊小朋友
 
                   
                   
                   
                   
                             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
                     
              
             
                   986
					986
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
					 
					 
					


 
            