还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 32031 Accepted Submission(s): 14373
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5Hint
Hint
代码:#include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> using namespace std; struct node{ int tt; int gg; int ll; }pro[5050]; int pp[210]; int cmp(const void *a,const void *b) { node *x=(node *)a; node *y=(node *)b; return x->ll-y->ll; //return *(node*)a.ll-*(node*)b.ll; } int find(int n) { int x=n; if(x!=pp[x]) pp[x]=find(pp[x]); return pp[x]; } int join(int x,int y) { int f1,f2; f1=find(x); f2=find(y); if(f1==f2) return 0; pp[f1]=f2; return 1; } int main() { int n; int m; while(scanf("%d",&n)!=EOF&&n) { int ans=1; m=n*(n-1)/2; for(int i=1;i<=n;i++) pp[i]=i; int sum=0; for(int i=0;i<m;i++) { scanf("%d %d %d",&pro[i].tt,&pro[i].gg,&pro[i].ll); } qsort(pro,m,sizeof(pro[0]),cmp); for(int i=0;ans<n;i++) { if(join(pro[i].tt,pro[i].gg)) { ans++; sum+=pro[i].ll; } } printf("%d\n",sum); } return 0; }