hdoj 1024 Max Sum Plus Plus 【动态规划】

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21508    Accepted Submission(s): 7202


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
  
  
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
分析:
求子段最大和。
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define Min  0x80000000  
using namespace std;
const int  N= 1e6+10; 
int pp[N],bb[N],dp[N];
int main()
{
	int n,m,i,j,k,max;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		for(i=1;i<=m;i++)
		scanf("%d",&pp[i]);
		for(i=0;i<=m;i++)
		dp[i]=0,bb[i]=0;
		for(i=1;i<=n;i++)
		 {
		 	max=Min;
		 	for(j=i;j<=m;j++)
		 	{
		 		if(dp[j-1]>bb[j-1])
		 		dp[j]=dp[j-1]+pp[j];
		 		else dp[j]=bb[j-1]+pp[j];
		 		bb[j-1]=max;
		 		if(max<dp[j])
		 		max=dp[j];
		 	}
		 	bb[j-1]=max;
		 }
		 printf("%d\n",max);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值