此主要讨论图像处理与分析。虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来。同样,这里面也有一些 也可以划归到计算机视觉中去。这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了。
8. Edge Detection
边缘检测也是图像处理中的一个基本任务。传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测。到现在,Canny 边缘检 测及其思想仍在广泛使用。关于 Canny 算法的具体细节可以在 Sonka 的书以及 canny 自己的论文中找到,网上也可以搜到。最快最直接的方法就是看 OpenCV 的源代码,非常好懂。在边缘检测方面,Berkeley 的大牛 J Malik 和他的学生 在 2004 年的 PAMI 提出的方法效果非常好,当然也比较复杂。在复杂度要求不高 的情况下,还是值得一试的。MIT的Bill Freeman早期的代表作Steerable Filter 在边缘检测方面效果也非常好,并且便于实现。这里给出了几篇比较好的文献, 包括一篇最新的综述。边缘检测是图像处理和计算机视觉中任何方向都无法逃避 的一个问题,这方面研究多深都不为过。
[1980] theory of edge detection
[1983 Canny Thesis] find edge
[1986 PAMI] A Computational Approach to Edge Detection
[1990 PAMI] Scale-space and edge detection using anisotropic diffusion
[1991 PAMI] The design and use of steerable filters
[1995 PR] Multiresolution edge detection techniques
[1996 TIP] Optimal edge detection in two-dimensional images
[1998 PAMI] Local Scale Control for Edge Detection and Blur Estimation
[2003 PAMI] Statistical edge detection_ learning and evaluating edge cues
[2004 IEEE] Edge Detection Revisited
[2004 PAMI] Design of steerable filters for feature detection using canny-like criteria
[2004 PAMI] Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues
[2011 IVC] Edge and line oriented contour detection State of the art
翻译
面向边缘和线条的轮廓检测:最新技术——http://tongtianta.site/paper/56281
作者:Giuseppe Papari *, Nicolai Petkov
摘要 -我们概述了过去二十年来提出的各种针对轮廓的边缘和线条定向方法。面向边缘和线的意思是不依赖于分割的方法。在边缘和轮廓之间进行区分。轮廓检测器分为本地和全局运算符。前者主要基于差异分析,统计方法,相位一致,等级排序过滤器及其组合。后者包括轮廓显着性的计算,感知分组,松弛标记和活动轮廓。涵盖了重要方面,例如旨在抑制纹理和噪声的预处理,多分辨率技术,计算模型与人类视觉系统的属性之间的联系,以及用于定量性能评估的过程和度量的使用。我们的主要结论是,考虑到多峰轮廓定义(通过亮度,颜色或纹理变化),减少噪声和纹理的轮廓掩盖影响的机制,感知分组,多尺度方面和高水平,轮廓检测已达到高度复杂性水平视觉信息。
关键词:轮廓检测,预处理,局部模式分析,轮廓显着性,格式塔分组,闭合,比例空间,性能评估
目录
1.简介
2.预处理
2.1.本地自适应过滤
2.2.功能最小化和非线性扩散
2.3.讨论
3.局部模式分析
3.1.差分运算符
3.2.统计方法
3.3.相一致和局部能量
3.4.VOS和形态学边缘检测器
3.5.结合当地特色
3.6.讨论
4.上下文和全局方法
4.1.轮廓突出
4.2.根据格式塔原理将像素分组为轮廓.
4.3.活动轮廓
4.4.讨论
5.多分辨率方法
5.1.多分辨率分析
5.2.比例尺空间中的轮廓检测
6.绩效评估
6.1.一般方法
6.2.性能指标
7.1.线性局部方法的复杂性
7.2.非线性局部方法的复杂性
7.3.非本地方法的复杂性
8.总结,讨论和结论
8.1.取决于输入参数
8.2.计算步骤的相互依存
8.3.形状信息的重要性
1.简介
对象轮廓在人类视觉中起着重要作用。例如,临床证据表明,负责感知轮廓的大脑区域V1和V2受损,使患者完全无法识别物体[1]。图1显示了一个区域边界(通常是区域边界与对象轮廓重合)如何影响人类视觉感知的示例。在图像的两端,平均亮度是相同的。但是,由于中间的亮度不连续,图像的左部分显得比右部分更亮。这表明这种不连续性的存在不仅影响边界的直接邻域,而且还影响整个图像的感知。另一个示例如图2所示。两个对象图标在其95%的像素中相同,但是轮廓上的细微差异导致感知到两个对象在语义上完全不同。建立用于轮廓感知的计算模型的重要性超出了人类视觉系统的唯一理解。在计算机视觉的许多实际应用中,例如对象识别,机器人视觉或医学图像分析,都需要轮廓检测算法。
图1:人眼中边界的重要性:左图是通过在右图所示的1D亮度轮廓上添加合成纹理获得的。
图2.轮廓在形状识别中的重要性:尽管所示的心脏和苹果图标重叠了超过95%的像素,但由于轮廓不同,我们很容易将它们识别为不同的形状。
与计算机视觉中使用的其他概念类似,例如,他们不了解关于人脸识别的任何论文,其中给出了人脸概念的定义。几位作者倾向于将轮廓视为图像中有趣区域的边界。但是,这样的定义将排除轮廓不是由区域边界引起的重要情况。图3中给出了两个示例。对于左侧的合成示例,图像中的每条线都应视为轮廓,尽管这些线都不是不同颜色或纹理的两个区域之间的边界。换句话说,在此示例中,轮廓图与图像本身重合。在中间,我们有一个自然图像,并在此图像上有一个手工绘制的相关等高线图,均取自伯克利数据集[2]。如我们所见,同样在这种情况下,并非所有轮廓都来自区域边界,例如船的绳索。在图4中给出了另一个示例,其描绘了观察轮廓的四种不同方式。在前两幅图像中,轮廓由亮度和纹理的局部变化定义,而在第三种和第四种情况下,全局关系引起对轮廓的感知。如我们所见,仅在前两种情况下,轮廓是由区域边界产生的。我们宁愿假设需要在给定图像中绘制轮廓的人类观察者之间会有很大的集中度。 在[2]中提出的定量分析显示了这种一致性有多强,表明轮廓的概念被不同的观察者用来指代相同的特征。
图3:不是由区域边界产生的轮廓示例:(左)合成图像,其中轮廓图与图像重合;(中)来自伯克利数据集[2]的自然图像;(右) 相关的等高线图,它说明了等高线的概念比区域边界的概念更广泛(例如,参见船的绳索)。
图4:轮廓被感知的各种环境 从左到右:轮廓由亮度和纹理变化,感知分组或附近点以及虚轮廓线定义。
由于人类的判断是唯一可以用来判断给定视觉特征是否为轮廓的标准,因此我们在操作上将给定图像中的轮廓定义为人类观察者将集中的线集合作为轮廓在该图像中(可以对图像处理和视觉模式识别文献中使用的其他概念(例如人脸)进行类似的操作定义)。有鉴于此,轮廓检测的研究旨在以数学方式理解和建模人们(有意识地或有意识地)用来识别这些线集的特征(例如对比度,良好的连续性和闭合性)。
在本文中,我们提出了一种基于上述轮廓的运算定义的现有轮廓检测器算法的分类法。 具体来说,我们根据每种方法中使用的感知上重要的特征对轮廓检测算法进行分类。 这导致两类算法:(i)局部方法,其中定义的特征是亮度,颜色和纹理的局部差异;(ii)全局方法,其中基于良好的连续性和闭合性来识别轮廓。
由于各种实际原因,例如可能的低信噪比(SNR)或输入图像中存在纹理,轮廓检测是一项艰巨的任务。图5显示了一些图像示例,这些图像的轮廓无法通过简单的低级视觉模型检测到,并且还需要高级视觉提示(例如形状)的反馈。这意味着必须通过引入有关要检测轮廓的先验知识(例如形状)来解释输入图像。但是,这种低水平和高水平视觉提示的集成被证明是一项艰巨的任务,通常会导致非常复杂的模型和对计算要求很高的算法,这些算法仅在特殊情况下才有效。
图5:考虑到全球感知组织和对世界的了解,轮廓检测需要高水平视觉的解释和反馈的图像示例。
我们区分以下几类轮廓检测器:(i)面向区域的方法[3,4],其中首先确定纹理或颜色恒定或缓慢变化的区域;然后将轮廓直接确定为封闭区域边界; (ii)面向边缘和线条的方法[5],其中检测由亮度,颜色或纹理的对比度定义的线条或边界; (iii)混合方法[6],其目的是区域和区域边界之间的一致性。在这里,我们对类(ii)的方法感兴趣。此类包括各种各样的技术,并且已针对每种特定方法类发布了概述文章。例如图像的微分结构分析[7](1994),尺度空间理论[8,9](2001,2003),统计分析,感知组织[10,11](1993,1999)和可变形模型,例如作为活动轮廓[12](1996)。 [6](1998)提出了边缘检测技术的一般概述。它主要侧重于局部方法,而上下文和全局技术(例如根据格式塔定律的边缘分组或活动轮廓)则没有深入讨论。旨在减少输入图像中的纹理和噪声以及进行定量性能评估的预处理也是尚未引起足够重视的问题。
我们承认有关基于区域的轮廓检测(即图像分割)方面的一些工作,在本次调查中不会对其进行深入处理。具体来说,最重要的技术是基于图论和割线[13,14],迭代均值偏移[15],统计方法[16,17],分水岭[18,19]和多通道分析[20,21]。
在本文中,我们概述了轮廓检测的主要面向边缘和直线的方法,这些方法已在上述先前的调查报告中提出。在第二部分中,我们讨论了旨在改善轮廓检测结果的预处理技术。我们将在第3节中讨论基于差分和统计分析,相位一致性和形态梯度的局部边缘检测器。在第4节中,我们考虑上下文和全局轮廓检测器,它们基于轮廓显着性,边缘分组和活动轮廓的计算。由于本地和全局技术的输出都取决于分析图像的分辨率,因此我们也回顾了多分辨率轮廓检测器(第5节)。最后,我们在第6节中描述量化绩效评估程序,并在第8节中得出结论。
2.预处理
本节介绍了旨在简化连续轮廓检测的轮廓保持平滑器(图6)。与图像恢复算法不同,轮廓保留平滑器不仅要消除噪声,还要消除纹理,因为后者会干扰轮廓检测[22]。在第2.1节中讨论了局部轮廓保持平滑器,而在第2.2节中,我们考虑了基于变分方法和非线性扩散的全局轮廓保持平滑器。
2.1.本地自适应过滤
减少纹理和噪声的最著名技术是线性低通滤波。但是,由于边缘和拐角主要具有高频分量,因此这些功能也会衰减。为了克服这个问题,已经设计了几种局部非线性轮廓保持平滑器。一个称为自适应平滑的通用框架[24]包括计算局部加权,该局部加权包括计算每个像素r 的邻域N(r) 上灰度级的局部加权平均值,其中权重可以通过多种方式取决于局部模式配置。最著名的自适应平滑技术是双边滤波[25],均值漂移[15],值和标准滤波结构[26,27]以及秩次滤波(ROF),也称为向量阶统计(VOS)[28]。
双边过滤。 在双边滤波中,权重由所谓的距离距离d = |I(p)-I(r)|的递减函数给出,权重是通过分析点r 和 ρ∈N(r)上的灰度值之间的局部密度分布得出的。 在均值平移中,均值平移的特殊情况[29]。 双向滤波和均值向量z = |p,I(p)|T均可以移动,这表明双向滤波具有良好的性能,尤其是在迭代使用的情况下。 然而,双边过滤受到术语 I(p)-I(r) 对噪声非常敏感这一事实的限制[23]。
值和标准过滤器结构。 不受此缺点影响的另一种方法是值和标准过滤器结构。 具体地,在N(r)的N个可能重叠的子区域上计算输入图像的N个加权局部平均值m和标准偏差s,i = 1 ... N。 对于每个像素,运算符的输出由与具有最小si 的子区域相对应的mi 值给出。此类运算符的著名代表是Kuwahara和Gauss-Kuwahara滤波器[27]。 这种机制可以在保留边缘和角落的同时减少噪声和纹理,并且该框架包括几种作为特殊情况的现有滤镜[30]。 此类算子不适当,因为不清楚si 的最小值达到一个以上区域时,应选择mi 的哪个值。 在[23]中提出了一个适定的值和准则过滤器结构。
等级排序过滤器。 在ROF中,点pi∈N(r),i = 1,…,N上的灰度是有序的,局部平均的权重取决于排序中的等级位置。 对于灰度图像,最常见的排序标准如下:
•从最暗到最亮的像素;
•根据数量|I(p)-I(r)|,ρ∈N(r)。
在第一种情况下,可以获得几种众所周知的过滤器,例如中值,加权中值,下中上层(LUM)过滤器[31]以及结构膨胀和侵蚀。 第二个准则引起k近邻去噪[32]。 对于诸如彩色图像之类的矢量值图像,可以制定不同的VOS排序标准[33,34]。 在[35]中介绍的最常见的是基于每个像素 ρk∈N(r)的总距离dk的计算,其中 l.I 是在有关颜色空间上定义的范数。对于异常值较高,而对于所谓的向量中值则最低。 通常,ROF和VOS滤波器可以有效降低高斯噪声以及盐和胡椒噪声。
2.2.功能最小化和非线性扩散
一般概念。在本小节中,我们将讨论基于变分方法和偏微分方程的轮廓保持平滑器。我们仅涵盖问题的主要方面,请参考专业文献以进行更详尽的处理(例如,参见[36]及其参考文献)。可以通过搜索在支撑上定义的函数U(r)来设计全局轮廓保持平滑器,该函数将形式为J = J1 + 入J2(其中
)的函数最小化,其中DnU是所有部分项的集合U的导数,直到n阶。对于平滑函数U(r),项J1低,而J2是I(r)与U(r)之间的距离(常见选择是
)。系数 入 控制噪声抑制和数据拟合之间的权衡。 J 的最小值可以看作是观察到的信号 I 在给定功能空间中的投影,其中所有功能都具有某些所需的规律性。例子是函数有界变化的众所周知的空间,Sobolev空间以及最近推出的Meyer空间。我们参考[37]进行简要概述。
Tikohonov正则化。 已经详尽地研究了函数 [38,39],并考虑了关于