一、基本流程
1.构建Spark Application的运行环境(启动SparkContext),SparkContext向资源管理器(可以是Standalone、Mesos或YARN)注册并申请运行Executor资源;
2.资源管理器分配Executor资源并启动StandaloneExecutorBackend,Executor运行情况将随着心跳发送到资源管理器上;
3.SparkContext构建成DAG图,将DAG图分解成Stage,并把Taskset发送给Task Scheduler。Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行同时SparkContext将应用程序代码发放给Executor;
4.Task在Executor上运行,运行完毕释放所有资源。
二、名词
1、Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行Executor代码。
2、Cluster Manager:Standalone : spark原生的资源管理,由Master负责资源的;
YARN : 主要是指Yarn中的ResourceManager。
3、Driver: 运行Application 的main()函数
Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运 环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver。
4、Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
Standalone:Worker节
Yarn:NoteManager节点
5.、Executor:执行器,是为某个Application运行在worker上的一个进程。
某个Application运行在worker节点上的一个进程, 该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个。
6、Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
7、Job: 包含多个Task组成的并行计算,往往action算子触发生成, 一个Application中往往会产生多个Job。
8、Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 也就是Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage分为两种:Shuffle Map StagResult Stag,Stage的边界就是发生shuffle的地方。
9、DAGScheduler: 根据Job构建基于Stage的DAG(有向无环图),并提交Stage给TaskScheduler。 其划分Stage的依据是RDD之间的依赖的关系找出开销最小的调度方法(是否发生shuffle)。
10、TaskScheduler: 将TaskSet提交给worker运行,每个Executor运行什么Task就是在此处分配的. TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。另外TaskScheduler还维护着所有Task的运行标签,重试失败的Task。
11、Job=多个stage,Stage=多个同种task。