OpenJudge | 放苹果

总时间限制: 1000ms 内存限制: 65536kB

描述

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

输入

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

输出

对输入的每组数据M和N,用一行输出相应的K。

样例输入

1
7 3

样例输出

8

来源

lwx@POJ

思路

定义了一个递归函数。这个函数接受三个参数:mstartn。它的目标是计算有多少种方式可以将 m 分解为 n 个非负整数的和,其中每个整数都不小于 start

如果 nm 都是 0,那么函数返回 1,因为只有一种方式可以将 0 分解为 0 个数的和,那就是不选择任何数。如果 n0m 不是 0,那么函数返回 0,因为没有办法将一个非零数分解为 0 个数的和。

如果 nm 都不是 0,那么函数进入一个循环,从 start 遍历到 m 的所有整数 i。对于每个 i,函数调用自身,将 m-iin-1 作为参数。这是因为,如果我们选择了 i,那么我们需要找出有多少种方式可以将 m-i 分解为 n-1 个非负整数的和,而这些整数都不小于 i。函数将每次递归调用的结果累加到 sum 中。

最后,函数返回 sum,即所有可能的分解方式的数量。

由上图可知,在每次的递归中,只要将start设为i,就可以保证不会出现重复的情况。

Code

C++

#include <bits/stdc++.h>
using namespace std;

int fun(int m, int start, int n) {
	int sum = 0;
	if(n == 0 && m == 0) return 1;
	else if(n == 0 && m != 0) return 0;
	for(int i = start; i <= m; i++) sum += fun(m-i, i, n-1);	
	return sum;
}

int main() {
	int t, m, n;
	cin >> t;
	for(int i = 1; i <= t; i++) {
		cin >> m >> n;
		cout << fun(m, 0, n) << endl;
	}
}

测试用例

样例1

输入
1
7 3
输出
8

样例2

输入
1
2 2
输出
2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mryan2005

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值