剑指offer之丑数

题目描述

把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。

解题思路

首先最容易想到的方法就是暴力破解,思路非常简单,首先除2,直到不能整除为止,然后除5到不能整除为止,然后除3直到不能整除为止。最终判断剩余的数字是否为1,如果是1则为丑数,否则不是丑数。
代码如下:

class Solution {  
public:  
    int nthUglyNumber(int n) {  
        int countN = 0;  
        int m = 0;  
        int lastNumber = 2;  
        while(countN < n)  
        {  
            m++;  
            int number = m;  
            while(number % 2 == 0)  
                number = number / 2;  
            while(number % 3 == 0)  
                number = number / 3;  
            while(number % 5 == 0)  
                number = number / 5;  
            if(number == 1)  
            {  
                countN++;  
            }  
        }  
        return m;  
    }  
};  

但是这样做会因超时提交失败。

第二种方法:

直接寻找丑数,由丑数的定义可知,任何一个丑数都是2^i * 3^j * 5^m这种形式的,因此不断寻找丑数,将他们按从小到大的顺序进行排列,直到第n个即为结果。

由于1是最小的丑数,那么从1开始,把2*1,3*1,5*1,进行比较,得出最小的就是1的下一个丑数,也就是2*1,这个时候,多了一个丑数‘2’,也就又多了3个可以比较的丑数,2*2,3*2,5*2,这个时候就把之前‘1’生成的丑数和‘2’生成的丑数加进来也就是(3*1, 5*1, 2*2,3*2,5*2)进行比较,找出最小的。。。。如此循环下去就会发现,每次选进来一个丑数,该丑数又会生成3个新的丑数进行比较。

首先定义一个数组存放丑数,认为1是丑数,则初始化数组num[0] = 1,然后从2,3,5这三个种子中挑选,选择num[0]*2,num[0]*3,num[0]*5中最小的数为新的丑数,显然应该选择2,即num[1] = 2,然后在从2,3,5中选择,这时应该是从num[1]*2,num[0]*3,num[0]*5中进行选择,显然选择3,即num[2] = 3,然后再从num[1]*2,num[1]*3,num[0]*5中选择最小的,选择2,即num[3] = 4,依次进行如下操作,得到最终的结果。

class Solution {
public:
    int GetUglyNumber_Solution(int index) {
        if(index <= 0)
            return 0;
        //因为1-6肯定都是丑数,所以当丑数数量小于7个时直接返回数量
        else if(index < 7)
            return index;
        int *num = new int[index];
        num[0] = 1;
        int t2 = 0, t3 = 0, t5 = 0, i;
        for (i = 1; i < index; ++i)
        {
            num[i] = min(num[t2] * 2, min(num[t3] * 3, num[t5] * 5));
            //找出到底是2,3,5中哪个种子计算出的ugly[i]
            //有可能有多个种子,比如ugly[num_2]*2 == ugly[num_3]*3时,需要把num_2++,并且要使num_3++
            //因此这里不能使用if-else,要全部使用if进行判断
            if (num[i] == num[t2] * 2)t2++;
            if (num[i] == num[t3] * 3)t3++;
            if (num[i] == num[t5] * 5)t5++;
        }
        return num[index - 1];

    }
};
阅读更多
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭