洛谷 P4841 城市规划(分治FFT+容斥)

6 篇文章 0 订阅
1 篇文章 0 订阅

题目链接
推一波式子
首先如果不要求联通的话公式很简单,令n个点不要求联通的方案数为 g n g_n gn
g n = 2 n ∗ ( n − 1 ) 2 g_n=2^{\frac{n*(n-1)}{2}} gn=22n(n1)
因为每条边都可以选或不选
然后假设要求联通的方案数为 f n f_n fn
可以找出 g n g_n gn f f f的关系
g n = ∑ i = 1 n ( n − 1 i − 1 ) f i g n − i g_n=\sum_{i=1}^n {n-1\choose i-1} f_ig_{n-i} gn=i=1n(i1n1)figni
相当于枚举第一个点所在的联通块大小为i,然后乘以其它点随便连的方案数,如果不理解请再看一下g和f的定义
现在我们要求 f n f_n fn所以拆一下式子
g n = f n + ∑ i = 1 n − 1 ( n − 1 i − 1 ) f i g n − i g_n=f_n+\sum_{i=1}^{n-1} {n-1\choose i-1} f_ig_{n-i} gn=fn+i=1n1(i1n1)figni
f n = g n − ∑ i = 1 n − 1 ( n − 1 i − 1 ) f i g n − i f_n=g_n-\sum_{i=1}^{n-1} {n-1\choose i-1} f_ig_{n-i} fn=gni=1n1(i1n1)figni
f n = g n − ∑ i = 1 n − 1 ( n − 1 ) ! ( i − 1 ) ! ( n − i ) ! f i g n − i f_n=g_n-\sum_{i=1}^{n-1} \frac{(n-1)!}{(i-1)!(n-i)!} f_ig_{n-i} fn=gni=1n1(i1)!(ni)!(n1)!figni
f n = g n − ( n − 1 ) ! ∑ i = 1 n − 1 f i ( i − 1 ) ! g n − i ( n − i ) ! f_n=g_n-(n-1)!\sum_{i=1}^{n-1} \frac{f_i}{(i-1)!} \frac{g_{n-i}}{(n-i)!} fn=gn(n1)!i=1n1(i1)!fi(ni)!gni
后面这个式子看着像卷积
∑ i = 1 n − 1 f i ( i − 1 ) ! g n − i ( n − i ) ! \sum_{i=1}^{n-1} \frac{f_i}{(i-1)!} \frac{g_{n-i}}{(n-i)!} i=1n1(i1)!fi(ni)!gni
h i = f i ( i − 1 ) ! h_i=\frac{f_i}{(i-1)!} hi=(i1)!fi t i = g i i ! t_i=\frac{g_i}{i!} ti=i!gi代入得
( n − 1 ) ! h n = n ! t n − ( n − 1 ) ! ∑ i = 1 n − 1 h i t n − i (n-1)!h_n=n!t_n-(n-1)!\sum_{i=1}^{n-1} h_i t_{n-i} (n1)!hn=n!tn(n1)!i=1n1hitni
h n = n t n − ∑ i = 1 n − 1 h i t n − i h_n=nt_n-\sum_{i=1}^{n-1} h_i t_{n-i} hn=ntni=1n1hitni
然后分治FFT就完事了
顺便一提,这题的原根也是3

代码如下:

#include<bits/stdc++.h>
#define mod 1004535809
#define gg 3
using namespace std;

int r[400010];
long long tmp1[400010],tmp2[400010],h[400010],t[400010];
long long fac[400010],inv[400010];

long long kasumi(long long a,long long b)
{
	long long ans=1;
	while(b)
	{
		if(b&1) ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}

void NTT(long long *a,int kd,int logn)
{
	int lim=(1<<logn);
	for(int i=0;i<lim;i++)
	{
		r[i]=(r[i>>1]>>1)|((i&1)<<(logn-1));
	}
	for(int i=0;i<lim;i++)
	{
		if(i<r[i]) swap(a[i],a[r[i]]);
	}
	for(int mid=1;mid<lim;mid<<=1)
	{
		long long wn=kasumi(gg,(mod-1)/(mid<<1));
		if(kd) wn=kasumi(wn,mod-2);
		for(int i=0;i<lim;i+=(mid<<1))
		{
			long long w=1;
			for(int j=0;j<mid;j++,w=w*wn%mod)
			{
				long long x=a[i+j];
				long long y=a[i+j+mid]*w%mod;
				a[i+j]=(x+y)%mod;
				a[i+j+mid]=(x-y+mod)%mod;
			}
		}
	}
	if(kd)
	{
		int invl=kasumi(lim,mod-2);
		for(int i=0;i<lim;i++)
		{
			a[i]=a[i]*invl%mod;
		}
	}
}

void solve(int l,int r,int logn)
{
	if(!logn) return ;
	int mid=(l+r)>>1;
	solve(l,mid,logn-1);
	for(int i=l;i<=r;i++)
	{
		tmp2[i-l]=t[i-l];
	}
	for(int i=l;i<=mid;i++)
	{
		tmp1[i-l]=h[i];
	}
	for(int i=mid+1;i<=r;i++)
	{
		tmp1[i-l]=0;
	}
	NTT(tmp1,0,logn);
	NTT(tmp2,0,logn);
	for(int i=l;i<=r;i++)
	{
		tmp1[i-l]=tmp1[i-l]*tmp2[i-l]%mod;
	}
	NTT(tmp1,1,logn);
	for(int i=mid+1;i<=r;i++)
	{
		h[i]=(h[i]-tmp1[i-l]+mod)%mod;
	}
	solve(mid+1,r,logn-1);
}

void init()
{
	fac[0]=1;
	for(int i=1;i<=200000;i++)
	{
		fac[i]=fac[i-1]*i%mod;
	}
	inv[200000]=kasumi(fac[200000],mod-2);
	for(int i=199999;i>=0;i--)
	{
		inv[i]=inv[i+1]*(i+1)%mod;
	}
	t[0]=1;
	long long tmp;
	for(int i=1;i<=200000;i++)
	{
		tmp=kasumi(2,1ll*(i-1)*i/2);
		t[i]=tmp*inv[i]%mod;
		h[i]=t[i]*i%mod;
	}
}

int n;

int main()
{
	int cnt=1;
	init();
	scanf("%d",&n);
	for(;(1<<cnt)<=n;cnt++);
	solve(0,(1<<cnt)-1,cnt);
	printf("%lld\n",h[n]*fac[n-1]%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值