2011~至今 百度指数采集方法与工具、支持百度指数、资讯指数、媒体指数

本文介绍了百度指数的采集历程,从早期的模拟曲线拟合到图片文字识别,再到最新研究出的100%精准、高速采集方法。最新方法只需几秒钟即可获取一个词的指数数据,支持整体、PC、移动指数以及媒体指数等,提供CSV格式输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

2020百度热度指数&论文数据概述

**
百度指数是以百度海量网民行为数据为基础的数据分享平台。在这里,你可以研究关键词搜索趋势、洞察网民兴趣和需求、监测舆情动向、定位受众特征。
历来百度指数的采集是爬虫界的梦魇,众多程序员也为采集百度指数绞尽脑汁,本人也经历了各个阶段。这里说说自己的实现经历:

1)模拟曲线似合。

模拟曲线拟合是我实现的第一个版本。从上图可以看见,指定曲线有特定的颜色,因为可以用python的图片处理库在图表截中搜索特定的点。同时结合最右典的刻度尺,就能够大概推算出当天的指数值。

这种方式有如下缺陷:
a - 指数在坡度变化大的地方推算出来的值误差较大。

b - 需要处理的细节很多。如在A\B\C\D\E\F等拐点处,这几个点的颜色与线条的颜色完全一样,因此需要做特殊处理。

c - 找点颜色算法的效率。我当初采用的方案是从上到下、从右到右。先找到最左右的第一个点,然后在附近查询。因为点是连续的。一般情况下一定能找到一个就近点。若因图片或其它干扰因素没有找到怎么处理呢? 那么就先找下一个点,然后推算出当前缺失的点。

流程一般是: 截图 -> 截取刻度尺-> 找点 -> 估值。

(2)图片文字识别

这种采集效率太低,而且准确率不高。

  • 间隔时间1天误差: 0.1%

  • 间隔时间10天误差: 0.2% 建议采用该间隔!

  • 间隔时间30天误差:1%

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值