查找算法:折半查找

话不多说,直接上代码:

package com.example.demo.study.search;

import com.example.demo.study.CommonService;
import com.example.demo.study.QuickSort;
import org.junit.Test;
import org.springframework.stereotype.Service;

@Service
public class DichotomySearch
{
//    @Autowired
//    private QuickSort quickSort;

    @Test
    public void testSearch()
    {
        QuickSort quickSort = new QuickSort();
        int[] a = {5, 8, 7, 28, 96, 4 , 7, 0, 3};
        quickSort.quickSort(a, 0, a.length-1);
        CommonService.printArray(a);
        System.out.println();
        search(a, 28);
    }

    /**
     * 二分查找法
     */
    public void search(int[] a, int src)
    {
        int start = 0;
        int end = a.length - 1;
        int i = 0;
        int n = 0;
        int position = -1;
        while (start < end)
        {
            n ++;
            int mid = (start + end) / 2;
            if (src > a[mid]) // 如果待查找值比中间值大,说明在数组右侧,则抛弃左边,从右边开始查找
            {
                start = mid + 1;
            }
            else if (src < a[mid])  // 如果待查找值比中间值小,说明在数组左侧,则抛弃右边,从左边查找
            {
                end = mid - 1;
            }
            else
            {
                position = mid;
                System.out.println(src + " position in a is " + mid);
                break;
            }
        }
        System.out.println("一共查询了 " + n + " 次");
        if (position == -1)
        {
            System.out.println("未找到查询元素:" + src);
        }
    }
}

算法思想:

首先将查找序列分成2半,确定可在哪一半,在确定的部分继续折半,直到找到该元素,或者查不到元素。

时间复杂度:

折半查找法要求查找的序列是有序序列,上面代码中以升序为例。每次减少一半序列,其时间复杂度为O(㏒碓数㏒2n),也就是2的对数级。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值