leetcode974 模式识别\同余定理:和可被 K 整除的子数组

给定一个整数数组 A,返回其中元素之和可被 K 整除的(连续、非空)子数组的数目。

示例:

输入:A = [4,5,0,-2,-3,1], K = 5
输出:7
解释:
有 7 个子数组满足其元素之和可被 K = 5 整除:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

提示:
1 <= A.length <= 30000
-10000 <= A[i] <= 10000
2 <= K <= 10000

暴力解法

  • 枚举起点、终点:O(n^2)
  • 求和、计数:O(n)

=> 时间复杂度:O(n^3)
=> 空间复杂度:O(1) 常数复杂度

模式识别:连续子数组问题

  • 方法:

    • 通过前缀和存储 p [ 1 ] = a [ 0 ] + . . . + a [ i ] p[1] = a[0] + ... + a[i] p[1]=a[0]+...+a[i]
    • i ~ j之间元素和 = p [ j ] − p [ i ] = p[j] - p[i] =p[j]p[i]
  • 复杂度优化

    • 求和、计数:O(1)

=》时间复杂度:O(n^2)
=> 空间复杂度:O(n)

同余定理

定理提要

  • 给定一个正整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。

    • 若a≡0(mod m),则m|a;
    • a≡b(mod m)等价于a与b分别用m去除,余数相同。
  • ( p [ j ] − p [ i ] ) % K = = 0 ( p[j] - p[i] ) \% K == 0 (p[j]p[i])%K==0 =》 P [ j ] % K = = P [ i − 1 ] % K P[j] \% K==P[i−1] \% K P[j]%K==P[i1]%K

  • 统计 p [ i ] % K p[i] \% K p[i]%K 同余的出现次数

散列表:统计出现次数

=》时间复杂度
- 构造散列表:O(n)
- 排列组合:O(n)
=》空间复杂度:O(n)

warning

  • 当被除数为负数时取模结果为负数,故 + K +K +K,作为C++数组下标
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值