信用卡违约率分析

加载数据

# 数据加载
data = data = pd.read_csv('./UCI_Credit_Card.csv')

 这个数据集是台湾某银行 2005 年 4 月到 9 月的信用卡数据,数据集一共包括 25 个字段,具体含义如下:
在这里插入图片描述

探索数据


# 数据探索
print(data.shape) # 查看数据集大小
print(data.describe()) # 数据集概览

数据规范

 去掉ID值,同时,目标值设置为下个月是否违约

data.drop(['ID'], inplace=True, axis =1) #ID这个字段没有用
target = data['default.payment.next.month'].values
columns = data.columns.tolist()#转换为list使其保持不变
columns.remove('default.payment.next.month')
features = data[columns].values

数据集划分

# 30%作为测试集,其余作为训练集
#对于那些本质上是随机的过程,我们有必要控制随机的状态,这样才能重复的展现相同的结果。
#如果,对随机状态不加控制,那么实验的结果就无法固定,而是随机的显现。所以设置random_state = 1
train_x, test_x, train_y, test_y = train_test_split(features, target, test_size=0.30, stratify = target, random_state = 1)

模型创建


from sklearn.model_selection import GridSearchCV

然后我们使用 GridSearchCV(estimator, param_grid, cv=None, scoring=None) 构造参数的自动搜索模块
在这里插入图片描述
构造完 GridSearchCV 之后,我们就可以使用 fit 函数拟合训练,使用 predict 函数预测,这时预测采用的是最优参数情况下的分类器

# 构造各种分类器
classifiers = [
    SVC(random_state = 1, kernel = 'rbf'),    
    DecisionTreeClassifier(random_state = 1, criterion = 'gini'),
    RandomForestClassifier(random_state = 1, criterion = 'gini'),
    KNeighborsClassifier(metric = 'minkowski'),
]
# 分类器名称
classifier_names = [
            'svc', 
            'decisiontreeclassifier',
            'randomforestclassifier',
            'kneighborsclassifier',
]
# 分类器参数
classifier_param_grid = [
            {'svc__C':[1], 'svc__gamma':[0.01]},
            {'decisiontreeclassifier__max_depth':[6,9,11]},
            {'randomforestclassifier__n_estimators':[3,5,6]} ,
            {'kneighborsclassifier__n_neighbors':[4,6,8]},
]

模型训练

# 对具体的分类器进行GridSearchCV参数调优
def GridSearchCV_work(pipeline, train_x, train_y, test_x, test_y, param_grid, score = 'accuracy'):
    response = {}
    gridsearch = GridSearchCV(estimator = pipeline, param_grid = param_grid, scoring = score)
    # 寻找最优的参数 和最优的准确率分数
    search = gridsearch.fit(train_x, train_y)
    print("GridSearch最优参数:", search.best_params_)
    print("GridSearch最优分数: %0.4lf" %search.best_score_)
    predict_y = gridsearch.predict(test_x)
    print("准确率 %0.4lf" %accuracy_score(test_y, predict_y))
    response['predict_y'] = predict_y
    response['accuracy_score'] = accuracy_score(test_y,predict_y)
    return response

模型评估

for model, model_name, model_param_grid in zip(classifiers, classifier_names, classifier_param_grid):
    pipeline = Pipeline([
            ('scaler', StandardScaler()),
            (model_name, model)
    ])
    result = GridSearchCV_work(pipeline, train_x, train_y, test_x, test_y, model_param_grid , score = 'accuracy')

完整代码

# -*- coding: utf-8 -*-
# 信用卡违约率分析
import pandas as pd
from sklearn.model_selection import learning_curve, train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from matplotlib import pyplot as plt
import seaborn as sns
# 数据加载
data = data = pd.read_csv('./UCI_Credit_Card.csv')
# 数据探索
print(data.shape) # 查看数据集大小
print(data.describe()) # 数据集概览
# 查看下一个月违约率的情况
next_month = data['default.payment.next.month'].value_counts()
print(next_month)
df = pd.DataFrame({'default.payment.next.month': next_month.index,'values': next_month.values})
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.figure(figsize = (6,6))
plt.title('信用卡违约率客户\n (违约:1,守约:0)')
sns.set_color_codes("pastel")
sns.barplot(x = 'default.payment.next.month', y="values", data=df)
locs, labels = plt.xticks()
plt.show()
# 特征选择,去掉ID字段、最后一个结果字段即可
data.drop(['ID'], inplace=True, axis =1) #ID这个字段没有用
target = data['default.payment.next.month'].values
columns = data.columns.tolist()
columns.remove('default.payment.next.month')
features = data[columns].values
# 30%作为测试集,其余作为训练集
train_x, test_x, train_y, test_y = train_test_split(features, target, test_size=0.30, stratify = target, random_state = 1)
    
# 构造各种分类器
classifiers = [
    SVC(random_state = 1, kernel = 'rbf'),    
    DecisionTreeClassifier(random_state = 1, criterion = 'gini'),
    RandomForestClassifier(random_state = 1, criterion = 'gini'),
    KNeighborsClassifier(metric = 'minkowski'),
]
# 分类器名称
classifier_names = [
            'svc', 
            'decisiontreeclassifier',
            'randomforestclassifier',
            'kneighborsclassifier',
]
# 分类器参数
classifier_param_grid = [
            {'svc__C':[1], 'svc__gamma':[0.01]},
            {'decisiontreeclassifier__max_depth':[6,9,11]},
            {'randomforestclassifier__n_estimators':[3,5,6]} ,
            {'kneighborsclassifier__n_neighbors':[4,6,8]},
]
 
# 对具体的分类器进行GridSearchCV参数调优
def GridSearchCV_work(pipeline, train_x, train_y, test_x, test_y, param_grid, score = 'accuracy'):
    response = {}
    gridsearch = GridSearchCV(estimator = pipeline, param_grid = param_grid, scoring = score)
    # 寻找最优的参数 和最优的准确率分数
    search = gridsearch.fit(train_x, train_y)
    print("GridSearch最优参数:", search.best_params_)
    print("GridSearch最优分数: %0.4lf" %search.best_score_)
    predict_y = gridsearch.predict(test_x)
    print("准确率 %0.4lf" %accuracy_score(test_y, predict_y))
    response['predict_y'] = predict_y
    response['accuracy_score'] = accuracy_score(test_y,predict_y)
    return response
 
for model, model_name, model_param_grid in zip(classifiers, classifier_names, classifier_param_grid):
    pipeline = Pipeline([
            ('scaler', StandardScaler()),
            (model_name, model)
    ])
    result = GridSearchCV_work(pipeline, train_x, train_y, test_x, test_y, model_param_grid , score = 'accuracy')

在这里插入图片描述

GridSearch最优参数: {'svc__C': 1, 'svc__gamma': 0.01}
GridSearch最优分数: 0.8186
准确率 0.8172
GridSearch最优参数: {'decisiontreeclassifier__max_depth': 6}
GridSearch最优分数: 0.8208
准确率 0.8113
GridSearch最优参数: {'randomforestclassifier__n_estimators': 6}
GridSearch最优分数: 0.8004
准确率 0.7994
GridSearch最优参数: {'kneighborsclassifier__n_neighbors': 8}
GridSearch最优分数: 0.8040
准确率 0.8036

使用 GridSearchCV 工具对模型参数进行调优


from sklearn.model_selection import GridSearchCV

然后我们使用 GridSearchCV(estimator, param_grid, cv=None, scoring=None) 构造参数的自动搜索模块
在这里插入图片描述
构造完 GridSearchCV 之后,我们就可以使用 fit 函数拟合训练,使用 predict 函数预测,这时预测采用的是最优参数情况下的分类器
我们用 sklearn 自带的 IRIS 数据集,采用随机森林对 IRIS 数据分类。假设我们想知道 n_estimators 在 1-10 的范围内取哪个值的分类结果最好,可以编写代码:


# -*- coding: utf-8 -*-
# 使用RandomForest对IRIS数据集进行分类
# 利用GridSearchCV寻找最优参数
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_iris
rf = RandomForestClassifier()
parameters = {"n_estimators": range(1,11)}
iris = load_iris()
# 使用GridSearchCV进行参数调优
clf = GridSearchCV(estimator=rf, param_grid=parameters)
# 对iris数据集进行分类
clf.fit(iris.data, iris.target)
print("最优分数: %.4lf" %clf.best_score_)
print("最优参数:", clf.best_params_)
运行结果如下:
最优分数: 0.9667
最优参数: {'n_estimators': 6}

最优准确率是 0.9667,当 n_estimators=6 的时候,是最优参数,也就是随机森林一共有 6 个子决策树

Pipeline 管道机制进行流水线作业

 做分类的时候往往都是有步骤的,比如先对数据进行规范化处理,可以用 PCA 方法对数据降维,最后使用分类器分类。
 Python 有一种 Pipeline 管道机制。管道机制就是让我们把每一步都按顺序列下来,从而创建 Pipeline 流水线作业。每一步都采用 (‘名称’, 步骤) 的方式来表示。
 例如我们需要先采用 StandardScaler 方法对数据规范化,即采用数据规范化为均值为 0,方差为 1 的正态分布,然后采用 PCA 方法对数据进行降维,最后采用随机森林进行分类


from sklearn.model_selection import GridSearchCV
pipeline = Pipeline([
        ('scaler', StandardScaler()),
        ('pca', PCA()),
        ('randomforestclassifier', RandomForestClassifier())
])

我们现在采用 Pipeline 管道机制,用随机森林对 IRIS 数据集做一下分类。先用 StandardScaler 方法对数据规范化,然后再用随机森林分类


# -*- coding: utf-8 -*-
# 使用RandomForest对IRIS数据集进行分类
# 利用GridSearchCV寻找最优参数,使用Pipeline进行流水作业
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
rf = RandomForestClassifier()
parameters = {"randomforestclassifier__n_estimators": range(1,11)}
iris = load_iris()
pipeline = Pipeline([
        ('scaler', StandardScaler()),
        ('randomforestclassifier', rf)
])
# 使用GridSearchCV进行参数调优
clf = GridSearchCV(estimator=pipeline, param_grid=parameters)
# 对iris数据集进行分类
clf.fit(iris.data, iris.target)
print("最优分数: %.4lf" %clf.best_score_)
print("最优参数:", clf.best_params_)
运行结果:
最优分数: 0.9667
最优参数: {'randomforestclassifier__n_estimators': 9}
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值