- 博客(19)
- 资源 (2)
- 收藏
- 关注
原创 开篇:从“能工巧匠”到“架构师”的思维跃迁
如果说入门篇是教你如何打造一辆可以行驶的卡丁车,那么进阶篇的目标,就是和你一起设计并调校一辆能赢得比赛的F1赛车。我们将不再满足于“功能实现”,而是开始系统性地拷问应用的性能(Performance)、鲁棒性(Robustness)和可观测性(Observability)。这是从开发者到架构师的关键一步
2025-06-13 08:11:33
41
原创 章节四:“不撞南墙不回头”的DFS探秘 - (深度优先搜索 / DFS)
本文介绍了深度优先搜索(DFS)算法的核心思想和实现。DFS是一种"不撞南墙不回头"的探索方式,会沿着一条路径尽可能深入,直到尽头才回溯。
2025-06-12 22:26:50
255
原创 最终章:从脚本到服务 —— 你的AI应用上线之路
本章将简要介绍LangServe,展示如何轻松地将你用LangChain构建的链或代理,打包成一个可供调用的REST API,为你的AI应用走向生产环境铺平道路。
2025-06-11 18:00:00
585
原创 第十章:毕业项目 —— 构建你的个人知识助理
我们将整合Chains、Memory、RAG和Agents,打造一个功能更全面的“个人知识助理”。它既能基于你的本地文档回答问题,也能在需要时上网搜索,还能进行流畅的多轮对话。
2025-06-11 09:30:00
644
原创 DeepSeek加持,告别低效循环?一文解锁AI如何给你的工作“提速增智”!
DeepSeek 作为一款理解和生成代码及自然语言的大模型,在代码生成与优化、技术文档撰写、学习新技术和日常办公自动化等四大核心场景中展现出巨大潜力。它能辅助编写代码、生成注释、解释复杂逻辑、提供学习路径建议,甚至帮助撰写报告和方案
2025-06-10 23:22:45
621
原创 章节三:图上涟漪:BFS层层推进解迷宫 - (广度优先搜索 / BFS)
本文介绍了广度优先搜索(BFS)算法的核心概念与应用。通过迷宫探险的生动比喻,阐述了BFS如何利用队列实现层级扩散搜索,确保找到无权图中的最短路径。文章详细解析了BFS的工作原理、时间复杂度(O(V+E))和空间复杂度(O(V)),并通过流程图直观展示搜索过程。最后提供了Java和Python的代码实现示例,展示如何使用邻接表完成BFS遍历。该算法适用于社交网络分析、路径规划等多种场景,是图论中最基础且重要的遍历方法之一。
2025-06-10 22:04:02
494
原创 第九章:智能代理 (Agents) —— 赋予AI使用工具的能力
这是最酷的部分!智能代理(Agents)能让LLM像人一样思考,并决定使用哪些“工具”(如搜索引擎、计算器、API)来完成复杂任务。我们将构建一个能上网查询实时信息并回答问题的智能代理。
2025-06-10 13:00:00
573
原创 第八章:知识检索(下)—— 构建一个本地知识库问答机器人
理论结合实践!我们将利用上一章的知识,亲手搭建一个完整的RAG应用。你将学会如何加载一篇本地文档(如PDF或Markdown),并创建一个能精准回答该文档相关问题的智能问答机器人。
2025-06-10 12:00:00
962
原创 第七章:知识检索(上)—— 为AI外挂一个知识库
LLM的知识有边界,如何让它基于你自己的文档来回答问题?这就是RAG的魔力。本章将介绍构建RAG系统的四大组件:文档加载器(Document Loaders)、文本分割器(Text Splitters)、文本嵌入(Embeddings)和向量数据库(Vector Stores)
2025-06-10 11:00:00
2503
原创 VS Code:我是如何让编码效率翻倍的?我的提效秘籍与心路历程
大家好,我是阿扩。在编程世界摸爬滚打多年,我深知工具对效率的重要性。今天,我将分享Visual Studio Code (VS Code) 如何成为我效率翻倍的秘密武器。文章深入剖析了VS Code的几大提效亮点:它强大的代码导航与重构功能,让我在复杂代码库中游刃有余;革命性的远程开发体验,让我能以本地舒适度操作远程代码;海量的插件生态,助我打造专属开发环境;集成的终端与任务系统,告别窗口切换;以及强大的调试器,让Bug无处遁形。结合我的个人故事和实践心得,我将展示VS Code如何从多个维度提升开发效率。
2025-06-10 08:30:49
604
原创 章节二:有序数组的“导航犬”:二分查找 - (二分查找 / Binary Search)
本文介绍了二分查找算法(Binary Search),这是一种在有序数组中高效搜索特定元素的算法。其核心思想是通过不断将搜索范围对半分割来快速定位目标,时间复杂度为O(log n)。文章通过字典查找的类比生动说明算法原理,并详细图解了搜索路径。性能分析指出二分查找在大型数据集上的显著优势,同时比较了迭代与递归实现的空间复杂度差异。最后提供了Java和Python的迭代实现代码示例,展示了算法的实际应用。该算法适用于有序数据,能极大提升搜索效率。
2025-06-09 23:53:14
699
原创 章节一:排序界的“闪电侠”为何快?- (快速排序 / Quick Sort)
俗话说得好,天下武功,唯快不破。在算法江湖里,排序算法的地位举足轻重,而提到“快”,有一个名字几乎是所有开发者绕不开的——那就是快速排序 (Quick Sort)!这家伙就像排序界的“闪电侠”,凭借其卓越的平均性能,在各种面试和实际项目中频频亮相。
2025-06-09 23:33:04
886
原创 第六章:记忆 (Memory) —— 赋予AI短期记忆
如何构建一个能连续对话的聊天机器人?关键在于记忆(Memory)。本章将探讨不同类型的记忆组件,教你如何让Chain具备上下文感知能力,从而实现真正的多轮对话。
2025-06-09 12:00:00
796
原创 第五章:链 (Chains) 与LCEL —— 搭建你的第一条AI流水线
本章是里程碑!我们将学习如何使用LangChain表达式语言(LCEL),将前面学到的模型、提示模板和输出解析器优雅地“链接”起来,形成一条自动化的处理链(Chain)。这是构建复杂应用的基础。
2025-06-09 11:45:00
926
原创 第四章:输出解析器 (Output Parsers) —— 让AI说人话
LLM的回答通常是自由文本,但我们的程序需要的是JSON、列表或自定义对象。本章将学习输出解析器(Output Parsers),它能像翻译官一样,将模型的原始输出格式化为我们需要的任何结构。
2025-06-08 10:29:48
779
原创 第三章:提示模板 (Prompt Templates) —— 精准的沟通艺术
模型的能力再强,也需要清晰的指令。本章将聚焦于提示模板(Prompt Templates),教你如何动态地构建、管理和复用给模型的指令。这是让AI应用变得可控、可预测的关键一步。
2025-06-08 10:26:51
1081
原创 第二章:模型 (Models) —— AI应用的大脑
深入了解LangChain中**模型(Models)**的概念。我们将学习如何接入不同的大语言模型(LLMs)和聊天模型(Chat Models),并理解它们之间的差异。本章将以阿里通义千问为例,展示如何配置和调用模型。
2025-06-08 10:22:32
669
原创 第一章:AI与LangChain初探 —— 你的第一个“智能”程序
什么是LangChain?它解决了什么痛点?我们将快速配置好开发环境,并用短短几行代码,调用通义千问(Qwen)模型,完成一个最简单的问答程序。让你亲眼见证“Hello, World!”到“Hello, AI!”的奇妙转变。
2025-06-08 10:19:07
605
原创 引言:你好,AI新世界
欢迎来到LangChain的世界!本引言将解释为什么大语言模型(LLM)正在改变世界,LangChain又在其中扮演了怎样一个“粘合剂”和“工具箱”的关键角色。我们将一起探讨,学习LangChain能为你的技术栈带来怎样的飞跃。
2025-06-08 10:15:44
376
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人