前言:
最短路径算法用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
最短路径问题是图论研究中的一个经典算法问题,是寻找图(由结点和路径组成的)中两结点之间的最短路径。
文章为了通俗易懂,避免使用一些复杂词汇,可能会丧失部分表述准确度,但是这样对我这样菜的新手更佳友好,文章介绍最为经典的Dijkstra算法。为了更好的描述算法增加可读性,将使用C++作为算法描述,而且不会考虑算法优化问题。
// 这一段是废话
迪杰斯特拉(Dijkstra)算法是典型的用来解决最短路径的算法,也是很多教程中的范例,由荷兰计算机科学家狄克斯特拉于1959年提出,用来求得从起始点到其他所有点最短路径。该算法采用了贪心的思想,每次都查找与该点距离最近的点,也因为这样,它不能用来解决存在负权边的图。解决的问题大多是这样的:有一个有向图G,边e的长度为l,找出第0点到第N点的最短路径。
问题描述:
如图片为有向图,0点为出发点。
输入正整数N(0<N<=4)作为终点,请求出从0点到N点的最短路径长度。
分析:
我们读入数据就涉及“图”在计算机中的存储方式,这里给出两个最常用方