最短路径问题-Dijkstra算法

本文介绍了Dijkstra算法,一种解决最短路径问题的经典算法。文章以通俗易懂的方式讲解了算法原理,并通过C++描述了算法过程,重点讨论了邻接矩阵的存储方式。Dijkstra算法适用于无负权边的图,每次选择距离起点最近的未访问节点进行扩展,直至找到所有节点的最短路径。
摘要由CSDN通过智能技术生成

前言:

最短路径算法用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

最短路径问题是图论研究中的一个经典算法问题,是寻找图(由结点和路径组成的)中两结点之间的最短路径。

文章为了通俗易懂,避免使用一些复杂词汇,可能会丧失部分表述准确度,但是这样对我这样菜的新手更佳友好,文章介绍最为经典的Dijkstra算法。为了更好的描述算法增加可读性,将使用C++作为算法描述,而且不会考虑算法优化问题。

// 这一段是废话

迪杰斯特拉(Dijkstra)算法是典型的用来解决最短路径的算法,也是很多教程中的范例,由荷兰计算机科学家狄克斯特拉于1959年提出,用来求得从起始点到其他所有点最短路径。该算法采用了贪心的思想,每次都查找与该点距离最近的点,也因为这样,它不能用来解决存在负权边的图。解决的问题大多是这样的:有一个有向图G,边e的长度为l,找出第0点到第N点的最短路径。

 

问题描述:

如图片为有向图,0点为出发点。

输入正整数N(0<N<=4)作为终点,请求出从0点到N点的最短路径长度。

 

分析:

我们读入数据就涉及“图”在计算机中的存储方式,这里给出两个最常用方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值