所使用的jdk版本为1.8.0_172版本,先看一下 ConcurrentHashMap<K,V> 在JDK中Map的类图中的主要继承实现关系:
概述
我们知道Java中的 HashMap 是线程不安全的(比如数组table扩容、put 操作多线程下值覆盖等都会导致数据不一致问题),ConcurrentHashMap 就是为了解决这个问题存在的。ConcurrentHashMap 数据结构大致是由Node数组+Node链表+TreeBin红黑树结构组成。相比于JDK7,JDK8 ConcurrentHashMap里面更多地使用CAS操作,使用锁(synchronized)时也是对Node进行加锁,锁的粒度更小。另外需要注意的是,ConcurrentHashMap 是不支持 key 或者 value 为 null 的,而 HashMap 是支持的。
数据结构
Node<K,V> 节点,注意使用 volatile 修饰 V val,这保证了可见性,但值value被修改时,其他线程能得到最新的修改值:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
//使用 volatile 修饰, 保证多线程下值V的可见性:线程A修改,线程B能立刻感知到,这也是get(K k)方法不用加锁原因
volatile V val;
volatile Node<K,V> next;
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
TreeBin<K,V> 类继承了 Node<K,V>,内部指向了一个红黑树的实现(节点为 TreeNode 类型)和一个读写锁值:
static final class TreeBin<K,V> extends Node<K,V> {
TreeNode<K,V> root;
volatile TreeNode<K,V> first;
volatile Thread waiter;
volatile int lockState;
// values for lockState
static final int WRITER = 1; // set while holding write lock 持有写锁状态
static final int WAITER = 2; // set when waiting for write lock 等待写锁
static final int READER = 4; // increment value for setting read lock 设置读锁的增量值
.......
put 方法
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// 混淆 hashCode,得到 hash 值
int hash = spread(key.hashCode());
// binCount:链表节点数目
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();//table 数组初始化
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//key 在数组上的哈希索引位置节点为null
//这种情况 cas 把 key-value 放在该位置上,不需要加锁
// cas 成功,跳出for循环;cas 失败,进到下一次循环,就走到下面的 if-else 分支了
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 如果table数组上的节点(链表头节点/树的根结点)hash值为-1,表示数组在进行扩容迁移数据,这个数组索引位置上的节点数据正在进行迁移
// 帮助迁移节点数据到 nextTable[] 数组
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//synchronized修饰链表头节点/红黑树根结点
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {//hash 值大于0,说明是链表节点
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
// key 已存在的情况,替换value值
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// key 不存在的情况,尾插法插入
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 如果数组索引位置节点为TreeBi,表明是红黑树结构
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 链表节点数目超过8且table数组的长度大于64,才会把链表转化为红黑树结构
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
// key-value 已经存在的情况,返回旧值即可,不影响size
if (oldVal != null)
return oldVal;
break;
}
}
}
// 新插入不存在的key-value的情况,需要计数器 + 1,用于计算当前Map的size
// 还要检查是否需要数组扩容以及迁移数据
addCount(1L, binCount);
return null;
}
put 方法,首先用混淆函数得到 key 的 hash 值,Node数组table为空,会进行数组的初始化【注意:Node<K,V>[] table 使用volatile修饰,保证数组修改的可见性】,initTable() 方法内部采用CAS操作保证只有一个线程进行数组初始化,其他线程自旋 Thread.yield() ,直至ConcurrentHashMap初始化完成。初始化之后,会根据hash 值找到 key 在数组上的索引位置【(n - 1) & hash 也即 hash % n】,通过cas把要插入的key,value放在数组索引位置上。如果失败,表明这个位置已被其它线程放入了值,则会进到下一层循环。此时如果 else if((fh ==f.hash) == MOVED),表明当前map正在扩容迁移数据,当前线程会加入帮助迁移数据,MOVED 的值为 -1,因为数组在扩容迁移数据的时候,每个线程分段帮助迁移数据的同时会把数组位置头节点(ForwardingNode,Node的子类)的hash值设为-1。 如果当前没有扩容,则进入else 分支中,通过对数组位置头节点Node加锁,在链表或者红黑树中查找key,插入或者替换旧值。
put 操作时,如果链表节点数目超过8并且数组table的长度大于64,才会把链表结构转换为红黑树结构。至于为什么是8,是因为根据泊松分布统计学得到的数值。
put 最后,addCount 方法用于计算map中的键值对数量,同时检查键值对数量是否超过了阈值,是否需要进行数组扩容以及迁移操作。计算size时,如果使用锁实现计数器,则高并发下势必会有大量线程抢夺锁,影响计数器性能。ConcurrentHashMap中使用CounterCell数组和基本计数器baseCount,baseCount的值加上CounterCell数组元素值之和就是键值对总数。通过这种方式用CAS代替了锁,具体细节还要再研究下。
size()方法
/**
* {@inheritDoc}
* 基准数值累加CounterCell[]数组中每个值,即为map中的键值对个数
* 可以理解为,为了防止多个线程竞争计数器,把每个线程的变更数映射到CounterCell[]数组的不同位置上
*/
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
get 方法
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
* 返回指定键所映射到的值,如果此映射不包含该键的映射关系,则返回 null。
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
* 更确切地讲,如果此映射包含满足从键 k 到值 v 的映射关系 key.equals(k),则此方法返回 v;
* 否则它返回 null。(最多只能有一个这样的映射关系)。
*
* @throws NullPointerException if the specified key is null 如果指定键为 null
*/
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
//先定位key在table[]的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
// table数组位置节点就是key,返回值val
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//数组位置节点的hash值为负数,则可能数组在扩容或者头节点结构为红黑树
//两种情况分别对照Node子类ForwardingNode 和 TreeBin 中的覆盖方法实现
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
//数组位置节点是链表节点的情况,遍历查找
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
get 方法的实现就比较简单了,因为Node中value使用的volatile关键字保证可见性,也不需要加锁。
ConcurrentHashMap虽然复杂但是设计得很巧妙,里面数组数据迁移方法 helpTransfer(tab, f),以及上面的CounterCell数组的使用还有些不清楚的地方后续还需要仔细理解一下。