最大子序和


如果设第i个状态dp[i]代表前i个数字组成的连续的最大子段和,并不能根据dp[i-1],dp[i-2],...,dp[0]推导出dp[i]


将求n个数的数组的最大子段和,转换为分别求出以第1个、第2个、……、第i个……、第n个数字结尾的最大子段和,再找出这N个结果中最大的,就是结果。

第i个状态dp[i]即为以第i个数字结尾的最大子段和(最优解)。由于以第i-1个数字结尾的最大子段和dp[i-1]和nums[i]相邻,所以:如果dp[i-1]>0,dp[i] = dp[i-1] + nums[i],否则,dp[i] = nums[i]

 

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        
        vector<int> dp(nums.size(),0);
        
        dp[0] = nums[0];
        int res = dp[0];
        
        for(int i = 1;i<nums.size();++i)
        {
            dp[i] = max(dp[i-1]+nums[i], nums[i]);
            
            if(dp[i] > res)
                res = dp[i];
        }
        
        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值