剑指offer 面试题43 1~n整数中1出现的次数

该博客介绍了如何计算从1到给定整数n(例如n=21345)之间所有数中数字1出现的总次数。方法包括分别处理1在最高位和不在最高位的情况,并采用递归策略处理较小的数字。时间复杂度和空间复杂度都是O(logn)。
摘要由CSDN通过智能技术生成

问题:输入一个整数n,求1~n这n个整数的十进制表示中1出现的次数。

输入:n

输出:1出现的次数

思路:

将所有的数字分为两段,1~1345和1346~21345.

1、先处理1346~21345中1出现的次数。分为:1在最高位的情况,1出现在除最高位之外的其他4位数中的情况。

2、再处理1~1345中1出现的次数,可用递归求得。

代码:

class Solution {
public:
    int PowerBase10(unsigned int n)
    {
        int result=1;
        for(unsigned int i=0;i<n;++i)
            result*=10;
        return result;
    }
    int NumberOf1(const char* strN)
    {
        if(!strN||*strN<'0'||*strN>'9'||*strN=='\0')
            return 0;
        int first=*strN-'0';
        unsigned int length= static_cast<unsigned int>(strlen(strN));
        
        if(length==1&& first==0)
            return 0;
        if(length==1&&first>0)
            return 1;
        // suppose strN is "21345"
        // numFirstDigit is 数字10000~19999 的第一位中的数目
        int numFirstDigit = 0;
        if(first>1)
            numFirstDigit = PowerBase10(length-1);
        else if(first==1)
            numFirstDigit = atoi(strN+1)+1;
        // numOtherDigits is 1346~21345除第一位之外的数位中的数目
        int numOtherDigits = first*(length-1)*PowerBase10(length-2);
        // numRecursive is 1~1345中的数目
        int numRecursive = NumberOf1(strN+1);
        
        return numFirstDigit+numOtherDigits+numRecursive;
    }
    int NumberOf1Between1AndN_Solution(int n)
    {
        if(n<=0)
            return 0;
        char strN[50];
        sprintf(strN,"%d",n);
        return NumberOf1(strN);
    }
};

复杂度分析:每次去掉最高位进行递归,递归的次数和位数相同。时间复杂度为O(logn),空间复杂度为O(logn)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值