#频谱#
T. Hu, Y. Huang, J. Chen, Q. Wu and Z. Gong, "3D Radio Map Reconstruction Based on Generative Adversarial Networks Under Constrained Aircraft Trajectories," in IEEE Transactions on Vehicular Technology, vol. 72, no. 6, pp. 8250-8255, June 2023, doi: 10.1109/TVT.2023.3239556. (南京航空航天大学,香港中文大学)
摘要
三维(3D)无线电地图可以表征接收信号强度(RSS)在3D空间上的空间分布,是无线资源管理和频谱监视的重要工具。然而,由于飞行器执行RSS测量的位置数量无穷多,轨迹受限,因此在实践中通常会获得不完整的3D无线电地图。为了解决这个问题,我们提出了一种基于生成对抗性网络(GAN)的3D无线电地图重建方案,其中提出了一个具有无监督学习的新型GAN变体。具体而言,该变体的成本函数集成了重建损失和对抗性损失,而网络结构在patchGAN的思想下利用了ResNet和扩张卷积。数值结果表明,网络结构和代价函数有利于重构方案,具有低波动性和较低的均方误差。此外,研究表明,即使用于推理的测量样本数量显著减少,所提出的方案在平均MSE方面也可以优于基线。