Tokenswift-超长文本生成加速框架,90分钟内生成10万Token文本

Tokenswift 是北京通用人工智能研究院团队推出的超长文本生成加速框架,能在90分钟内生成10万Token的文本,相比传统自回归模型的近5小时,速度提升了3倍,生成质量无损。Tokenswift 通过多Token生成与Token重用、动态KV缓存更新以及上下文惩罚机制等技术,减少模型加载延迟、优化缓存更新时间并确保生成多样性。支持多种不同规模和架构的模型,如1.5B、7B、8B、14B的MHA和GQA模型。

TokenSwift的主要功能


超长文本生成加速:Tokenswift 能显著缩短超长文本的生成时间。例如,传统自回归模型生成10万Token的文本可能需要近5个小时,TokenSwift仅需90分钟,速度提升了3倍,极大地提高了生成效率。
无损加速:在加速的同时,Tokenswift能保持原始模型的输出质量,确保生成文本的质量和多样性。支持多种模型:Tokenswift支持多种不同规模和架构的模型,包括1.58、7B、8B、14B的模型,以及多头注意力(MHA)和分组查询注意力(GQA)架构。


TokenSwift的技术原理


多Token并行生成与Token复用:TokenSwit借鉴了Medusa等方法,通过引入额外的线性层,使模型在一次前向传播中能同时生成多个草稿Token。基于生成文本中的n-gram频率信息,系统会自动检索并复用高频短语,进一步减少模型重新加载的次数,提升整体效率。
动态KV缓存更新策略:在KV缓存管理上,TokenSwift采用动态更新策略。系统在生成过程中将初始KV缓存保留,同时根据Token的重要性对后续缓存进行有序替换。
基于树结构的多候选Token验证:为保证生成结果与目标模型预测的一致性,Tokenswift引入了树形注意力机制。通过构建包含多个候选Token组合的树形结构,采用并行验证的方式,从中随机选择最长且有效的n-gram作为最终输出,确保生成过程无损且多样性得到提升。
上下文惩罚策略:为了进一步抑制重复生成问题,Tokenswift设计了一种上下文惩罚方法。在生成过程中为近期生成的Token施加惩罚,使模型在选择下一Token时更倾向于多样化输出,有效减少重复现象。

TokenSwift的应用场景


内容创作与文案生成:Tokenswift 能在短时间内生成高质量的文本内容。对于内容创作者、广告公司和媒体机构来说,可以大幅提高工作效率。
智能客服与聊天机器人:在智能客服和聊天机器人中,TokenSwift 可以快速生成详细的回答,在需要处理复杂问题或长篇解释时,能提供更高效、更连贯的对话体验。
学术研究与论文撰写:对于学术研究和论文撰写,Tokenswift 可以帮助研究人员快速生成文献综述、实验报告或论文草稿,节省大量的时间和精力。
代码生成与编程辅助:在编程领域,Tokenswift 可以用于生成复杂的代码片段或文档,帮助开发者快速构建和优化代码。

内容来源:https://www.dcyzq.com/post/103.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值