现代通信信道中大多数采用多输入多输出(MIMO)系统。这些系统的维度可以包含时间和频率资源、多用户、多天线及其他资源。这些特性虽然承诺了显著的性能提升,但在计算复杂度上却带来了极大的检测问题。近年来,深度机器学习在全球范围内引发了一场革命。在许多工程领域,如计算机视觉,已经证明计算机可以通过输入和期望输出的样本对来“学习”其间的函数关系。然后,这些规则可以用于分类(检测)未来输入的未知输出。本文的目标是将深度机器学习应用于经典的MIMO检测问题,探讨其优缺点。
A. MIMO检测背景
二元MIMO检测设置是一个经典的简单假设检验问题[1]。最大似然(ML)检测器是在同时检测所有符号时最小联合错误概率的最优检测器。它可以通过高效的搜索算法实现,如球面解码器[2]。难点在于其最坏情况下的计算复杂度对于许多应用而言是不可行的。因此,提出了几种改进的搜索算法,以提高复杂性性能[3] [4]。实施次优检测算法一直备受关注。最常见的次优检测器是线性接收器,即匹配滤波器(MF)、解相关或零强制(ZF)检测器和最小均方误差(MMSE)检测器。更高级的检测器基于决策反馈均衡(DFE)、近似消息传递(AMP)[5]和半定松弛(SDR)[6],[7]。目前,在许多实际场景下,AMP和SDR都提供了接近最优的准确性。AMP在实际中简单且便宜实现,但作为一种迭代方法,在问题设置中可能会发散。SDR更为稳健,具有多项式复杂度,但在实际中要慢得多。
B. 机器学习背景
在过去的十年里,机器学习在所有工程领域中取得了爆炸性的成功。监督分类类似于统计检测理论。两者都观察到噪声数据,并对其来源的离散未知量进行决策。通常,这两个领域的区别在于检测理论基于环境的先验概率模型,而学习是数据驱动的,基于示例。在MIMO检测的背景下,已知模型允许我们生成尽可能多的合成示例。因此,我们采用了另一种概念。我们将“学习”解释为从预定算法类中选择最佳解码器的思想。经典的检测理论试图选择未知量的最佳估计,而机器学习则试图选择要应用的最佳算法。实际上,这意味着检测的计算量大的部分在每次获得新观测时都要应用。而在学习中,昂贵的阶段是离线进行的算法学习。一旦找到最佳规则算法,就可以在实时中廉价地实现它。
机器学习有着悠久的历史,但以前仅限于简单和小规模的问题。快进到最近几年,该领域见证了深度革命。“深度”形容词与使用复杂和表现力强的算法类有关,也称为架构。这些通常是具有多层非线性运算的神经网络。深度架构比浅层架构更具表现力[9],但以前被认为难以优化。随着大数据、优化算法和更强计算资源的进步,这些网络在不同问题中目前是最先进的,包括语音处理和计算机视觉。特别是,设计深度架构的一种有前景的方法是展开现有的迭代算法[10]。每次迭代被视为一层,该算法称为网络。学习从现有算法作为初始起点开始,并使用优化方法改进算法。例如,这一策略在稀疏重建的背景下被证明是成功的。将迭代收缩和阈值以及AMP的稀疏版本的迭代展开为网络并学习其最佳参数的领先算法均得到了改进[11],[12]。
近年来,深度学习方法被提出用于提高固定信道中线性码解码器的性能[13]。在[14]中,深度学习在通信应用中的几个应用得到了考虑,包括在衰落信道上解码信号,但那里提出的架构似乎无法扩展到更高维度的信号。
C. 主要贡献
本文的主要贡献是引入了一种用于MIMO检测的深度学习网络DetNet。DetNet通过展开投影梯度下降法得出。仿真结果表明,它在实现近乎最优检测性能的同时,是一种可以实时实现的快速算法。其精度类似于SDR,但运行时间快了30多倍。与另一具有最优性保证的检测器AMP相比,DetNet更为稳健。它在处理病态信道时表现出色,并且不需要知道噪声方差。
在深度学习的一般背景下,另一个重要贡献是DetNet能够在单次训练中对多个模型进行处理。最近,有许多关于学习反转线性信道和重建信号的工作[11],[12],[15]。据我们所知,所有这些都是针对单一固定信道开发和训练的。相比之下,DetNet设计用于在单次训练阶段处理多个信道。