时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
设计函数求一元多项式的导数。(注:xn(n为整数)的一阶导数为n*xn-1。)
输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。
输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是0,但是表示为“0 0”。
输入样例:
3 4 -5 2 6 1 -2 0
输出样例:
12 3 -10 1 6 0
思想:以两个数组来存储系数与指数然后更新,对求导后系数进行判断,为零则不输出。在最开始的时候检查最高次幂是否为0,是则输出“0 0”。其他注意事项在代码中有注释。
#include <iostream>
using namespace std;
int main()
{
int n;
int count = 0;
int A[1001],B[1001];//一元多项式最低幂次为0,如果为负数就成分式了,而一元多项式一定是整式
char a;
while(a!='\n')
{
cin>>A[count]>>B[count];
if(B[count]<0||B[count]>1000||A[count]<-1000||A[count]>1000||A[count]==0&&B[count]!=0)
return 0;
if(B[0]==0)
{
cout<<"0 0";
return 0;
}
a = cin.get();//这里将输入缓冲中数据以字符形式读入,不要用于读取整数
count++;
}
for(int i=0; i<count; i++)
{
if(i<count-1&&B[i]-B[i+1]<=0)//指数递降
return 0;
A[i] = B[i]*A[i];
if(B[i]!=0)
B[i]--;
}
for(int i=0; i<count; i++)
{
if(A[i]!=0)
{
cout<<A[i]<<" "<<B[i];
if(i<count-1&&A[i+1]!=0)
cout<<" ";
}
}
}