prim算法

/*
prim算法与Dijkstra算法使用的思想几乎完全相同,只有在数组d[]的含义上有所区别,其中
Dijkstra算法的数组d[]含义为起点s到达顶点Vi的最短距离,而prim算法的数组d[]含义为顶
点Vi与集合S(已经处理过的点的集合)的最短距离,两者的区别仅在于最短距离是顶点Vi针对"起
点s"还是"集合S"。
prim(保持树形keep tree,其中有个p可以联想记忆)算法伪代码如下:
//G为图,一般设成全局变量;数组d为顶点与集合S的最短距离
Prim(G,d[])
{
	初始化;
	for(循环n次)
	{
		u = 使d[u]最小的还未被访问的顶点标号;
		记u已被访问;
		for(从u出发能到达的所有顶点v)
		{
			if(v未被访问&&以u为中介点使得v与集合S的最短距离d[v]更优)
			{
				将G[u][v]赋值给v与集合S的最短距离d[v];
			}
		}
	}
}
再次说明:Dijkstra算法和prim算法实际上是相同的思路,只不过是数组d[]的含义不同罢了
*/
//prim算法实现代码
#include<vector>
#include<algorithm>
using namespace std;
const int MAXV = 1000;//最大顶点数
const int INF = 1000000000;//设INF为一个很大的数
//邻接矩阵版
int n, G[MAXV][MAXV];//n为顶点数,MAXV为最大顶点数
int d[MAXV];//顶点与集合S的最短距离
bool vis[MAXV] = { false };//标记数组,vis[i]==true表示已访问。初值均为false

int prim()//默认0号为初始点,函数返回最小生成树的边权之和
{
	fill(d, d + MAXV, INF);//fill函数将整个d数组赋为INF(慎用memset)
	d[0] = 0;//只有0号顶点到集合S的距离为0,其余全为INF
	int ans = 0;//存放最小生成树的边权之和
	for (int i = 0; i < n; i++)//循环n次
	{
		int u = -1, MIN = INF;//u使d[u]最小,MIN存放该最小的d[u]
		for (int j = 0; j < n; j++)
		{
			if (vis[j] == false && d[j] < MIN)
			{
				u = j;
				MIN = d[j];
			}
		}
		//找不到小于INF的d[u],则剩下的顶点和集合S不连通
		if (u == -1)return -1;
		vis[u] = true;//标记u为已访问
		ans += d[u];//将与集合S距离最小的边加入最小生成树
		for (int v = 0; v < n; v++)
		{
			//v未被访问&&u能到达v&&以u为中介点可以使v离集合S更近
			if (vis[v] == false && G[u][v] != INF&&G[u][v] < d[v])
			{
				d[v] = G[u][v];//将G[u][v]赋值给d[v]
			}
		}
	}
	return ans;//返回最小生成树的边权之和
}

//邻接表版
struct Node
{
	int v, dis;//v为边的目标顶点,dis为边权
};
vector<Node> Adj[MAXV];//图G,Adj[u]存放从顶点u出发可以到达的所有顶点
int n;//n为顶点数,图G使用邻接表实现,MAXV为最大顶点数
int d[MAXV];//顶点与集合S的最短距离
bool vis[MAXV] = { false };//标记数组,vis[i]==true表示已访问。初值均为false

int prim()//默认0号为初始点,函数返回最小生成树的边权之和
{
	fill(d, d + MAXV, INF);//fill函数将整个d数组赋为INF(慎用memset)
	d[0] = 0;//只有0号顶点到集合S的距离为0,其余全为INF
	int ans = 0;//存放最小生成树的边权之和
	for (int i = 0; i < n; i++)//循环n次
	{
		int u = -1, MIN = INF;//u使d[u]最小,MIN存放该最小的d[u]
		for (int j = 0; j < n; j++)//找到未访问的顶点中d[]最小的
		{
			if (vis[j] == false && d[j] < MIN)
			{
				u = j;
				MIN = d[j];
			}
		}
		if (u == -1)return -1;
		vis[u] - true;//标记u为已访问
		ans += d[u];//将与集合S距离最小的边加入最小生成树
		//只有下面这个for与邻接矩阵的写法不同
		for (int j = 0; j < Adj[u].size(); j++)
		{
			int v = Adj[u][j].v;//通过邻接表直接获得u能到达的顶点v
			if (vis[v] == false && Adj[u][j].dis < d[v])
			{
				//如果v未被访问&&以u为中介点可以使v离集合S更近
				d[v] = Adj[u][j].dis;//将Adj[u][j].dis赋值给d[v]
			}
		}
	}
	return ans;//返回最小生成树的边权之和
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值