01背包、完全背包、多重背包详解

目录

一、01背包问题

二、完全背包问题

三、多重背包


一、01背包问题

问题:

有n件物品和一个容量是m的背包。第i件物品的体积是vi,价值是wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

解答:

问题中每个物品只有选与不选两种状态。

动态规划的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i][j-vi]+wi) , d[i][j]表示只看前i个物品且总体积是j时,最大的价值。

//v是物品的体积,w是价值,m是背包容量
int package(vector<int> &v, vector<int> &w, int m) {
	int n = v.size();
	vector<vector<int>> dp(n+1, vector<int>(m+1,0));
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			dp[i][j] = dp[i - 1][j];
			if(j >= v[i-1])
				dp[i][j] = max(dp[i][j], dp[i-1][j - v[i-1]] + w[i-1]);
		}
	}
	return dp[n][m];
}

代码分析:

首先,最外层遍历物品(1~n)。内层遍历背包容量(1~m)。在实现dp[i][j] = max(dp[i-1][j], dp[i][j-vi]+wi)状态转移时,在计算dp[i][j]时,需要使用dp[i-1][j]的内容。观察代码可以发现每次的状态转移只与上一次的结果有关,会使dp[i-1][j] 与dp[i-1][j-vi]。

我们反向使用上一次的结果可以简化辅助空间得到下面的状态转移:dp[j] = max(dp[j], dp[j-vi]+wi)

int package(vector<int> &v, vector<int> &w, int m) {
	int n = v.size();
	vector<int> dp(m + 1, 0);
	for (int i = 0; i < n; i++) {
		for (int j = m; j >= v[i]; j--) {
			dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
		}
	}
	return dp[m];
}

 

二、完全背包问题

问题:

有n种物品,每种物品可以选无数次和0次,背包的容量是m。第i件物品的体积是vi,价值是wi。
求:将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

分析:

问题中每个物品拥有选择多个和不选的状态。

动态规划的状态转移方程与01背包相同dp[j] = max(dp[j], dp[j-vi]+wi) , d[j]表示总体积是j时,最大的价值。

int package(vector<int> &v, vector<int> &w, int m) {
	int n = v.size();
	vector<int> dp(m + 1, 0);
	for (int i = 0; i < n; i++) {
		for (int j = v[i]; j <= m; j++) {
			dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
		}
	}
	return dp[m];
}

与01背包问题的代码略微有点不同,最外层同样是遍历物品(1~n)。内层遍历从v[i]开始到m

三、多重背包

问题:

有n种物品和一个容量是m的背包。第i种物品的体积是vi,价值是wi,数量是si
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

可以把多重背包看作是01背包处理,使用与01背包相同的方法。

int package(vector<int> &v, vector<int> &w, vector<int> &s, int m) {
	int n = v.size();
	vector<int> dp(m + 1, 0);
	for (int i = 0; i < n; i++) {
		for (int j = m; j >= v[i]; j--) {
			for (int k = 1; k <= s[i] && k*v[i] <= j; k++) {
				dp[j] = max(dp[j], dp[j - k*v[i]] + k*w[i]);
			}		
		}
	}
	return dp[m];
}

代码分析:

与01背包同样的方法 ,只是把每一个物品的不同数量si当做是有si种物品进行处理,多了一层对同一物品的循环。

时间复杂度O(n3)

二进制优化的方法

学过linux操作系统的同学应该知道,修改linux文件的权限的数字法。

 如何使用最少的数的组合表示一个数的全域。比如:用一些数字或它们的组合来表示(1~7)所有的数。

0 0 0
4 2 1

在二进制中,7 = 4+2+1,6=4+2,5=4+1,4=4,3=2+1,2=2,1=1

在上一个方法中,我们需要遍历同一物品的所有的个数。复杂度很高,使用二进制方法可以,有效降低时间复杂度。

比如有一种物品i有si件,如果si是7时。我们可以把这些物品拆分成4件,2件,1件。将4件物品的体积与价值分别相加当作一件新的物品加入物品集合,接下来2件,1件同理。我们就得到了一个每种物品只有1件的物品集合。可以用01背包方法来解决。

int package_bit(vector<int> &v, vector<int> &w, vector<int> s, int m) {
	int n = v.size();
	vector<int> vr, wr;
	for (int i = 0; i < n; i++) {
		for (int k = 1; k <= s[i]; k *= 2) {
			s[i] -= k;
			vr.emplace_back(k*v[i]);
			wr.emplace_back(k*w[i]);
		}
		if (s[i] > 0) {
			vr.emplace_back(s[i] * v[i]);
			wr.emplace_back(s[i] * w[i]);
		}
	}
	vector<int> dp(m + 1, 0);
	for (int i = 0; i < vr.size(); i++) {
		for (int j = m; j >= vr[i]; j--) {
			dp[j] = max(dp[j], dp[j - vr[i]] +wr[i]);
		}
	}
	return dp[m];
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值