HDOJ 5365 Run 【正多边形】

HDOJ 5365 Run 【正多边形】

题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5365


地球人都知道整点是不能构成正五边形和正三边形和正六边形的,
所以只需暴力枚举四个点判断是否是正四边形即可。
假如你不是地球人,那么即使暴力枚举正三边形和稍微不那么暴力地找正五边形和正六边形也是可以通过的(反正找不到)。


正多边形的判断:四条边相等,两条对角线相等
或者对角线向量大小相等且垂直
使用的求边长函数直接过的


#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
#define clr(c) memset(c, 0, sizeof(c));
#define debug(x) cout<<"debug "<<x<<endl;
#define pi acos(-1.0)
const int INF = 0x3f3f3f3f;
typedef long long ll;
const int MAXL = 25;
int n;

typedef struct point{
    int x, y;
    bool operator < (const point& p) const{
        if(x == p.x) return y < p.y;
        else return x < p.x;
    }
    bool operator > (const point& p) const{
        return p < *this;
    }
}p;

p p1, p2, p3, p4;
p point[MAXL];
double l1, l2, l3, l4, l5, l6;
int cnt;

inline double length(p p1, p p2){
    return (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y);
}

void Resolve(){
    cnt = 0;
    sort(point, point+n);
    for(int i = 0; i < n-3; i++)
            for(int j = i+1; j < n-2; j++)
                for(int k = j+1; k < n-1; k++)
                    for(int l = k+1; l < n; l++){
                        p1 = point[i];
                        p2 = point[j];
                        p3 = point[k];
                        p4 = point[l];
                        l1 = length(p1, p2);
                        l2 = length(p1, p3);
                        l3 = length(p2, p4);
                        l4 = length(p3, p4);
                        l5 = length(p1, p4);
                        l6 = length(p2, p3);
                        if(l1 == l2 && l2 == l3 && l3 == l4 && l5 == l6) cnt++;
                    }
    printf("%d\n", cnt);
}

int main(){
    while(~scanf("%d", &n)){
        for(int i = 0; i < n; i++){
            scanf("%d%d", &point[i].x, &point[i].y);
        }
        Resolve();
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值