DeepFM因子分解机核心技术解析:从数学原理到工业级推荐系统实战

部署运行你感兴趣的模型镜像
一、技术原理与数学公式

1. FM(Factorization Machines)核心思想
公式:
y^(x)=w0+∑i=1nwixi+∑i=1n∑j=i+1n⟨vi,vj⟩xixj\hat{y}(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_jy^(x)=w0+i=1nwixi+i=1nj=i+1nvi,vjxixj

  • 低秩分解:通过隐向量内积 ⟨vi,vj⟩\langle v_i, v_j \ranglevi,vj 捕捉二阶特征交叉,参数复杂度从 O(n2)O(n^2)O(n2) 降至 O(kn)O(kn)O(kn)kkk 为隐向量维度)
  • 案例:电商场景中,用户ID与商品ID的交叉特征(如 user_123 × item_456)通过FM自动学习潜在关联

2. DeepFM架构

  • 双路并行:FM(显式特征交叉) + DNN(隐式高阶交叉)
  • 共享输入层:特征Embedding同时输入FM和DNN模块

二、实现方法(PyTorch代码片段)
import torch
import torch.nn as nn

class FM(nn.Module):
    def __init__(self, feature_size, k):
        super(FM, self).__init__()
        self.w0 = nn.Parameter(torch.zeros(1))
        self.w = nn.Embedding(feature_size, 1)  # 一阶权重
        self.v = nn.Embedding(fedingding(feature_size, k)  # 隐向量
  
    def forward(self, x):
        # 一阶项
        linear_term = torch.sum(self.w(x) * x.unsqueeze(2), dim=1)
        # 二阶项
        square_of_sum = torch.pow(torch.sum(self.v(x) * x.unsqueeze(2), dim=1), 2)
        sum_of_square = torch.sum(torch.pow(self.v(x) * x.unsqueeze(2), 2), dim=1)
        interaction = 0.5 * (square_of_sum - sum_of_square)
        return self.w0 + linear_term.squeeze() + interaction.squeeze()

# DeepFM完整模型
class DeepFM(nn.Module):
    def __init__(self, feature_size, k, hidden_units):
        super(DeepFM, self).__init__()
        self.fm = FM(feature_size, k)
        self.embedding = nn.Embedding(feature_size, k)
        self.dnn = nn.Sequential(
            nn.Linear(k*num_fields, hidden_units[0]),
            nn.ReLU(),
            nn.Linear(hidden_units[0], 1)
        )
  
    def forward(self, x):
        fm_output = self.fm(x)
        embedded = self.embedding(x).view(x.size(0), -1)
        dnn_output = self.dnn(embedded)
        return torch.sigmoid(fm_output + dnn_output)

三、应用案例与效果指标

行业场景:电商推荐系统CTR预测

  • 特征工程
    • 用户侧:用户ID、历史点击、购买品类偏好
    • 商品侧:商品ID、价格、类目、品牌
    • 上下文:时间、地理位置、设备类型
  • 效果对比
    模型AUCCTR提升
    LR0.712-
    FM0.743+8.5%
    DeepFM0.769+15.2%

四、优化技巧

1. 超参数调优

  • 隐向量维度 kkk:通常8~32,过小导致欠拟合,过大增加计算量
  • 学习率:使用自适应优化器(如Adam),初始值建议0.001
  • 正则化:L2正则化系数 λ\lambdaλ 设为1e-4 ~ 1e-3

2. 工程实践

  • 稀疏特征处理:Hash分桶 + Embedding压缩(如TensorFlow tf.feature_column.embedding_column
  • 在线推理优化:模型轻量化(TensorRT加速)、特征预计算(如用户实时行为缓存)

五、前沿进展

1. 改进模型

  • FwFM(Field-weighted FM):引入Field间权重,区分不同特征域的重要性
  • xDeepFM:显式高阶特征交叉,通过CIN(Compressed Interaction Network)模块

2. 开源项目

  • DeepCTR(GitHub):支持DeepFM、xDeepFM等模型的快速实现
  • MetaFM(ICLR 2023):元学习优化FM隐向量初始化,冷启动效果提升20%

关键知识点总结

  • FM优势:在高维稀疏数据中有效捕捉特征交叉,避免人工特征工程
  • DeepFM创新点:结合浅层FM与深层DNN,兼顾记忆与泛化能力
  • 实战技巧:使用TensorBoard监控训练过程,重点关注AUC和Logloss曲线

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值