大语言模型系列
引入篇
ABeam
Insight
自从图灵测试在20世纪50年代提出以来,人类一直不断探索机器如何掌握语言智能。语言本质上是一个由语法规则支配的错综复杂的人类表达系统。
近年来,具备与人对话互动、回答问题、协助创作等能力的ChatGPT等大语言模型应用横空出世,引发社会热议,成为全球科技的竞争焦点。大语言模型也成为人工智能发展的热点方向,有望给人工智能创新带来爆发式增长。
本系列文章中,ABeam将聚焦于大语言模型,探讨大语言模型的商业模式和行业应用案例,以期为不同类型的企业带来迎接科技浪潮、拥抱大模型的新灵感。
本期作为大语言模型系列的引入篇,将为大家介绍语言模型及其演进历程、大语言模型的底座、概念、特点等基本概览。
01
关于语言模型
About Language Model
1
概念
语言模型是根据语言客观事实而进行的语言抽象数学建模,是一种对应关系。语言模型与语言客观事实,就如同数学上的抽象直线与具体直线之间的关系。
2
语言模型的任务
■ 判断句子的语言序列是否为正常语句
【例】语言序列W1,W2,W3,…,Wn
P=概率
语言模型即P(W1,W2,W3,…,Wn )
■ (在语言识别、机器翻译等任务中)对候选答案进行打分排序,以此筛选出正确结果
【例】语音识别:
结果1-再给我两份葱,让我把记忆煎成饼
结果2-再给我两分钟,