MovieLens数据集

MovieLens数据集是一个关于电影评分的数据集,里面包含了从IMDB, The Movie DataBase上面得到的用户对电影的评分信息,详细请看下面的介绍。


介绍:

links.csv:

文件里面的内容是帮助你如何通过网站id在对应网站上找到对应的电影链接的。数据格式如下: 
movieId, imdbId, tmdbId 
movieId:表示这部电影在movielens上的id,可以通过链接https://movielens.org/movies/(movieId)来得到。 
imdbId:表示这部电影在imdb上的id,可以通过链接http://www.imdb.com/title/(imdbId)/ 
来得到。 
tmdbId:表示这部电影在themoviedb上的id,可以通过链接http://www.imdb.com/title/(tmdbId)/ 
来得到。

movies.csv:

movieId, title, genres 
文件里包含了一部电影的id和标题,以及该电影的类别。数据格式如下: 
movieId, title, genres 
movieId:每部电影的id 
title:电影的标题 
genres:电影的类别(详细分类见readme.txt)

ratings.csv:

文件里面的内容包含了每一个用户对于每一部电影的评分。数据格式如下: 
userId, movieId, rating, timestamp 
userId: 每个用户的id 
movieId: 每部电影的id 
rating: 用户评分,是5星制,按半颗星的规模递增(0.5 stars - 5 stars) 
timestamp: 自1970年1月1日零点后到用户提交评价的时间的秒数 
数据排序的顺序按照userIdmovieId排列的。

tags.csv:

文件里面的内容包含了每一个用户对于每一个电影的分类。数据格式如下: 
userId, movieId, tag, timestamp 
userId: 每个用户的id 
movieId: 每部电影的id 
tag: 用户对电影的标签化评价 
timestamp: 自1970年1月1日零点后到用户提交评价的时间的秒数 
数据排序的顺序按照userIdmovieId排列的。

README.txt


下载链接:

官网地址: https://grouplens.org/datasets/movielens/ 
ml-latest-small(1MB): http://files.grouplens.org/datasets/movielens/ml-latest-small.zip 
ml-latest(234.2MB): http://files.grouplens.org/datasets/movielens/ml-latest.zip


读取方法

利用Python的csv模块进行读取操作。

import csv
with open(file_url, 'r') as f:
     data = csv.reader(f)
     for i in data:
         print(i)
  • 6
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值