Java手写背包问题算法

Java手写背包问题算法

1. 算法思维导图

背包问题
动态规划解法
0-1背包问题
完全背包问题
多重背包问题
贪心算法解法
分数背包问题
分组背包问题
二维费用背包问题

2. 该算法的手写必要性和市场调查

背包问题是计算机科学中的经典问题,解决背包问题的算法在实际应用中具有重要意义。手写背包问题算法的必要性在于深入理解算法原理,掌握算法的实现细节,以便在实际应用中能够灵活运用。根据市场调查,背包问题算法被广泛应用于物流、资源分配、投资决策等领域,具有较高的市场需求和潜在商业价值。

3. 该算法的实现详细介绍和步骤

步骤1:定义问题

背包问题是指在给定容量的背包和一组物品的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。

步骤2:动态规划解法

动态规划是解决背包问题的常用方法。该算法通过构建一个二维数组来记录每个子问题的最优解,从而逐步求解整个问题。

步骤3:0-1背包问题

0-1背包问题是背包问题的最基本形式,每个物品只能选择放入背包一次或不放入背包。解决0-1背包问题的关键在于确定状态转移方程和边界条件。

代码实现:
// 定义函数,求解0-1背包问题
public int knapsack01(int[] weights, int[] values, int capacity) {
    int n = weights.length;
    int[][] dp = new int[n+1][capacity+1];
    
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= capacity; j++) {
            if (weights[i-1] <= j) {
                dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]);
            } else {
                dp[i][j] = dp[i-1][j];
            }
        }
    }
    
    return dp[n][capacity];
}

步骤4:完全背包问题

完全背包问题是背包问题的一种扩展形式,每个物品可以选择放入背包多次。解决完全背包问题的关键在于修改状态转移方程和边界条件。

代码实现:
// 定义函数,求解完全背包问题
public int knapsackComplete(int[] weights, int[] values, int capacity) {
    int n = weights.length;
    int[] dp = new int[capacity+1];
    
    for (int i = 0; i < n; i++) {
        for (int j = weights[i]; j <= capacity; j++) {
            dp[j] = Math.max(dp[j], dp[j-weights[i]] + values[i]);
        }
    }
    
    return dp[capacity];
}

步骤5:多重背包问题

多重背包问题是背包问题的另一种扩展形式,每个物品有一定的数量限制。解决多重背包问题的关键在于将每个物品拆分成多个01背包问题。

代码实现:
// 定义函数,求解多重背包问题
public int knapsackMultiple(int[] weights, int[] values, int[] counts, int capacity) {
    int n = weights.length;
    int[] dp = new int[capacity+1];
    
    for (int i = 0; i < n; i++) {
        for (int j = capacity; j >= weights[i]; j--) {
            for (int k = 1; k <= counts[i] && k*weights[i] <= j; k++) {
                dp[j] = Math.max(dp[j], dp[j-k*weights[i]] + k*values[i]);
            }
        }
    }
    
    return dp[capacity];
}

4. 该算法的手写实现总结和思维拓展

手写背包问题算法有助于深入理解算法原理和实现细节,提高算法的灵活应用能力。通过手写实现,可以更好地理解动态规划的思想和背包问题的解决方法。思维拓展方面,可以进一步研究背包问题的变种和优化算法,探索更高效的解决方案。

5. 该算法的完整代码

// 定义函数,求解0-1背包问题
public int knapsack01(int[] weights, int[] values, int capacity) {
    int n = weights.length;
    int[][] dp = new int[n+1][capacity+1];
    
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= capacity; j++) {
            if (weights[i-1] <= j) {
                dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]);
            } else {
                dp[i][j] = dp[i-1][j];
            }
        }
    }
    
    return dp[n][capacity];
}

// 定义函数,求解完全背包问题
public int knapsackComplete(int[] weights, int[] values, int capacity) {
    int n = weights.length;
    int[] dp = new int[capacity+1];
    
    for (int i = 0; i < n; i++) {
        for (int j = weights[i]; j <= capacity; j++) {
            dp[j] = Math.max(dp[j], dp[j-weights[i]] + values[i]);
        }
    }
    
    return dp[capacity];
}

// 定义函数,求解多重背包问题
public int knapsackMultiple(int[] weights, int[] values, int[] counts, int capacity) {
    int n = weights.length;
    int[] dp = new int[capacity+1];
    
    for (int i = 0; i < n; i++) {
        for (int j = capacity; j >= weights[i]; j--) {
            for (int k = 1; k <= counts[i] && k*weights[i]<= j; k++) {
                dp[j] = Math.max(dp[j], dp[j-k*weights[i]] + k*values[i]);
            }
        }
    }
    
    return dp[capacity];
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

竹山全栈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值