了解下mysql的B+树:一种为了减少IO操作快速搜索到数据的数据结构,如下图:
说明:
蓝色部分磁盘块
黄色部分指针
深蓝色目标数据块
分析一下查找的过程:
如果要查询数据为29的值:
1.将磁盘一加入到内存中此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针
2.通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO
3. 29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询
总结:总计三次IO,真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,
每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
解释下什么叫二分法:其实就是一种通过不断排除不可能的东西,来最终找到需要的东西的一种方法,所以可以理解成排除法。之所以叫二分,是因为
每次排除都把所有的情况分为“可能”和不可能两种,然后抛弃所有“不可能”的情况。
优化sql实际上主要目的是为了减少IO操作:
1.如果想在mysql配置方面减少IO的操作:尽可能使用缓存,减少读写对数据库的随机IO的请求,同时减少写的随机IO的随时发生,利用各种buffer去缓存。
2.创建索引:合理的索引是为了少量IO操作达到数据的获取。
建立索引的几大原则:
1.在where 从句,group by从句,on从句中出现的列
2.最左前缀匹配,非常重要的原则,mysql会一直向左匹配直到遇到范围查询(>,<,between,like)就停止匹配
eg:a=1 and b=2 and c=3 and d=4 索引 add index (a,b,c,d) 这样创建d是用不到索引的
eg:a=1 and b=2 and c=3 and d=4 索引 add index(a,b,d,c) 这样创建则都可以用到,a,b,d的顺序可以任意调整
3.离散度大的列放到联合索引的前面
计算离散度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少。
select * from payment where staff_id=2 and customer_id=584;
是index(sftaff_id,customer_id)好?还是index(customer_id,staff_id)?
由于customer_id的离散度更大,所以应该使用index(customer_id,staff_id)
4.索引列不能参与计算,保持列干净
索引列不能参与计算,保持列干净,在where语句中索引字段不要使用函数,进行检索的时候需要把所有元素都应用函数才能比较,先人成本太大。
5.索引字段越小越好
使用短索引,如果对字符串列进行索引,应该指定一个前缀长度,可节省大量索引空间,提升查询速度。
6.尽量的扩展索引,不要新建索引。
说了这么多索引的优点但是索引也是有负面的:
每个额外的索引都要占用额外的磁盘空间,并降低写操作的性能
2.在修改表的内容时,索引必须进行更新,有时可能需要重构,因此,所花的时间越长。
什么叫做好的索引:
查询频繁(业务逻辑决定)
区分度高
长度小(与区分度保持一个平衡就是一个最优的效果)
尽量能覆盖常用查询字段(并不表示所有字段都建立索引)
建议:
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20可以这样查询:select id from t where num=10 union all select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了:select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:select id from t where name like ‘李%’若要提高效率,可以考虑全文检索。
- 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id from t where num=@num可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num/2=100应改为:select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where substring(name,1,3)=’abc’ ,name以abc开头的id
应改为:
select id from t where name like ‘abc%’
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)
13.很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
索引并不是越多越好,索引固然可 以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
- 与临时表一样,游标并不是不可使 用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。