自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

深耕CV

深耕CV:从CV算法调参到工业落地的技术马拉松

  • 博客(456)
  • 收藏
  • 关注

原创 【硬件“阴阳两极】彻底搞懂Vdd、Vcc、GND与Vss

本文系统介绍了电路设计中电源与地的核心概念,详细解析了Vdd、Vcc、GND、Vss四大关键符号的技术起源与应用场景。通过类比水库与大海的关系,阐释了电源端与地端的功能差异,提供了术语对照表和技术对比指南。文章还涵盖了PCB布局规范、电源完整性设计实战技巧,包括退耦电容配置和多电压系统设计示例,并针对常见问题给出解决方案。最后强调电源完整性是电路性能的基础,提供设计检查清单和学习资源推荐,帮助硬件工程师建立扎实的电源设计基础。

2026-01-09 16:52:06 713

原创 【半导体基础】本征半导体、P型半导体、N型半导体、自由电子、空穴、载流子

本征半导体指的是完全纯净的半导体,如硅单质或锗单质。它是由单一元素组成的纯净晶体结构。

2026-01-09 16:02:03 285

原创 【共价键】从氢原子到DNA的生命之桥

摘要: 共价键是原子间通过共享电子形成的强化学键,构成了物质世界的基础。从最简单的氢分子(H₂)到复杂的DNA和塑料,共价键通过单键(σ键)、双键(σ+π键)和三键(σ+2π键)实现原子间的稳定连接。其核心特征包括电子共享、方向性和高强度。共价键的多样性(如极性键、配位键)解释了水、氧气等物质的性质。与离子键、金属键相比,共价键具有独特的分子构建能力,是生命、材料科学和纳米技术的基石。理解共价键,是解锁微观与宏观世界联系的关键。

2026-01-09 15:49:43 565

原创 【氮气】N的最外层电子数是5,为何N-N之间是3键?

氮气形成三键的根本驱动力,是每个氮原子都试图通过共享三对电子,来满足八隅体规则,达到最稳定的电子构型。这个三键(1σ + 2π)强度极高,赋予了氮气超凡的稳定性,也深刻地影响着地球的生态和化学工业(比如合成氨反应就需要克服这个巨大的能垒)。所以,最外层电子数(5个)不仅决定了氮原子能形成几个键,更通过追求八电子稳定结构的“天性”,直接决定了它必须形成三键。

2026-01-09 15:35:44 532

原创 【半导体基础】快速计算原子最外层电子数

本文介绍了快速确定原子最外层电子数的三种主要方法:主族元素直接对应法(最外层电子数等于族号)、周期表位置法(过渡元素通常为1-2个电子)和电子构型推导法。重点讲解了主族元素的规律,指出过渡元素的特殊案例(如钯、铬、铜),并提供了实用记忆口诀。文章还区分了"最外层电子"与"价电子"的概念差异,推荐了相关工具资源,强调掌握这些方法对化学研究和材料设计的重要性。通过系统学习和练习,可以快速准确地确定大多数元素的最外层电子数。

2026-01-09 15:23:28 442

原创 【原子的户型图】能层、能级、原子轨道

本文系统梳理了原子核外电子的能层与能级结构。主要内容包括:1)能层(电子层)的定义及编号(K-Q层),随n增大能量升高;2)能级(s、p、d、f亚层)与轨道数量关系,每个能层包含n个能级;3)原子轨道数量与电子容量计算公式,第n能层最多容纳2n²个电子;4)电子云与轨道形状特征,包括s轨道(球形)、p轨道(哑铃形)、d轨道(四叶草形)和f轨道(复杂花瓣形)的空间分布与成键特性。文章通过图表和公式,完整呈现了原子核外电子的排布规律及其在化学键形成中的重要作用。

2026-01-09 15:06:09 541

原创 【半导体基础】硅和锗带电吗?

硅和锗本身是电中性材料,但通过掺杂可形成N型(电子导电)和P型(空穴导电)半导体。N型掺入5价元素产生自由电子,P型掺入3价元素产生空穴,整体仍保持电中性。这种可控的导电特性是二极管、晶体管等半导体器件的工作基础,N型表现负电特性,P型表现正电特性。

2026-01-09 13:42:47 630

原创 【从型号读懂芯片性能】STC89C52系列单片机命名规则

本文详细解析了STC89C52系列单片机的命名规则,帮助开发者精准选型。型号如STC89C52RC-40I-PDIP40包含7个关键部分:品牌(STC)、系列(89)、工艺(C/LE)、存储器大小(52等)、工作频率(40)、温度范围(I)和封装类型(PDIP40)。其中,C系列适合5V系统,LE系列为低功耗3.3V;存储器从4KB到64KB不等;工业级(I)比商业级(C)耐温更广;PDIP封装最适合新手焊接。文章建议初学者从STC89C52RC开始,并根据项目需求选择型号,强调不是参数越高越好,而应匹配实

2026-01-09 08:55:43 832

原创 【时钟周期 vs 指令】为什么51单片机需要12个时钟周期?

《单片机时钟周期与指令执行机制详解》 本文深入解析了单片机中时钟周期、机器周期和指令周期的关系。12MHz晶振下,51单片机将12个时钟周期(83ns/个)组成1个机器周期(1μs),用于完成取指、译码、执行等基本操作。不同指令需要1-4个机器周期,这种12分频设计源于历史技术限制。文章通过具体指令案例展示了时钟分配,对比了现代单片机的改进(如1分频和流水线技术),并提供了程序运行时间的计算方法。最后指出从51到ARM架构的思维转变,强调理解时序对精确编程的重要性。文中包含实用实验建议,帮助读者直观验证理论

2026-01-08 15:59:41 601

原创 你以为只有单片机用晶振?【电子世界的“心跳之源”】

晶振(晶体振荡器)是一种利用石英晶体压电效应产生精确频率信号的电子元件。简单说,它就是电子设备的“心跳发生器”。分频15次:32,768 ÷ 2¹⁵ = 1Hz(1秒)最容易用二进制计数器得到精确的1秒信号!从简单的单片机到复杂的超级计算机,晶振这个小小的元件一直在默默地提供着时间的基准。它不处理数据,不存储信息,但它决定了整个系统能否协调工作。现在你知道了单片机用晶振,电脑也用晶振,所有数字设备都用晶振!不同设备对晶振的要求天差地别选择晶振要考虑频率、精度、稳定性等多个因素。

2026-01-08 15:38:42 591

原创 【一文彻底搞懂】单片机的心跳——晶振

单片机晶振相当于电子系统的“生物钟”,为电路提供精确稳定的时钟信号。12MHz晶振每秒振动1200万次,决定了51单片机的工作节奏。其原理是利用石英晶体的压电效应产生固定频率振荡,误差极小。晶振频率直接影响指令执行速度,例如12MHz下51单片机每条指令约1微秒。12MHz因整数分频方便、性价比高成为经典选择,但不同应用需匹配不同频率。实际开发中需根据晶振频率调整延时函数等代码,并注意晶振精度对定时器的影响。高频虽快但增加功耗,需根据需求选择合适频率。

2026-01-08 14:50:30 789

原创 【单片机】解密STC89C52

STC89C52是一款经典的8位51系列单片机,由中国宏晶科技(STC)设计生产。该芯片具有512字节RAM和8K Flash存储空间,工作频率为12MHz,适合各类嵌入式控制应用。作为电子爱好者的入门首选,STC89C52以其简洁架构、高性价比和丰富资源著称。文章详细解析了芯片各参数含义,并通过LED闪烁实例展示了其编程方法。虽然资源有限,但正是这种限制使其成为学习嵌入式开发的理想平台,可应用于智能小车、电子钟等众多项目。

2026-01-08 14:10:46 762

原创 ROM:不只是单片机的记忆,而是电子世界的“基石手册”

ROM是一种非易失性存储器断电后数据不丢失:与RAM(内存)形成鲜明对比以读取操作为主:“只读”并非绝对不可写,而是强调其主要用途存储固化信息:通常存放系统启动、基础控制等关键代码和数据。

2026-01-08 13:56:47 841

原创 NOR Flash vs NAND Flash:存储世界的两大门派的全面战争与融合

1984年,日本东芝公司的舛冈富士雄博士发明了闪存(Flash Memory)技术,这一发明彻底改变了数据存储的格局。NOR Flash和NAND Flash。今天,你的手机、电脑、U盘、甚至汽车和智能家电中,都活跃着它们的身影。但它们究竟是谁?有什么区别?为什么一个负责“开机启动”,一个负责“存电影”?让我们一探究竟。经过30多年的发展,NOR Flash和NAND Flash已经形成了完美的分工协作NOR是“引路人”:负责系统启动、关键代码执行,追求可靠、快速、稳定NAND是“仓库管理员”

2026-01-08 13:53:44 432

原创 【恍然大悟】8位单片机如何处理大数与二进制乘法?

刚接触单片机时,你一定见过这样的参数:STC89C52,8位单片机,RAM 512字节…一次只能处理8位数据(0-255),那稍微大点的数怎么办?计算不会出错吗?今天,我们就来彻底解决这个疑惑,揭开8位单片机处理大数的神秘面纱!分而治之:8位单片机通过拆分大数为多个8位块,配合进位标志,可以处理任意大的数移位本质:二进制中,移位就是乘以2的幂次方,是高效的乘法实现方式软硬协同:编译器自动处理底层细节,让我们可以专注于逻辑欢迎在评论区分享你的想法!关注我,一起玩转嵌入式开发!

2026-01-08 13:08:19 858

原创 【一定要区分清楚】单片机和树莓派都是计算机?

单片机与树莓派是两种常见的嵌入式设备,各有特点:单片机是精简的微控制器,专为特定任务优化,功耗低、价格便宜、响应快,适合简单控制项目;树莓派则是功能完整的微型电脑,可运行操作系统,扩展性强但功耗较高,适合复杂应用。两者没有优劣之分,选择取决于项目需求。初学者可先通过单片机学习基础控制,再进阶到树莓派开发更复杂的功能。在实际应用中,二者常协同工作,共同构建物联网系统。

2026-01-08 11:35:30 740

原创 【keil5和STC-ISP】保姆级下载安装教程

点击下载中的产品下载。然后就会看到如下界面:可以看到,提供了针对不同芯片架构的四套独立开发工具。:你使用的51单片机,其核心就是。C51套件里的编译器是专门为这个架构优化的。:如果安装了MDK-Arm,你在创建新项目时将像“AT89C51”这样的51系列芯片型号,无法进行开发。进入如下界面:双击下载 → 双击运行安装 → 同意协议并下一步 → 使用默认安装路径 → 完成安装。

2026-01-08 11:23:13 646

原创 【Keil5与STC-ISP】单片机开发入门必备软件

本文介绍了单片机开发的两大核心工具Keil5和STC-ISP。Keil5作为嵌入式开发IDE,负责代码编写、编译和调试;STC-ISP则是STC单片机专用下载工具,实现程序烧录和参数配置。文章详细讲解了两者的功能特点、使用流程及常见问题解决方法,并提供了学习路线建议。通过比喻"Keil5是厨师,STC-ISP是服务员",形象说明了二者在单片机开发中的协同关系。掌握这两个工具是学习嵌入式开发的基础,文章为初学者提供了从入门到实践的完整指导。

2026-01-08 09:36:59 699

原创 【ESP-AI】零基础DIY智能语音设备:硬件组件

本文详细介绍了DIY智能语音设备的硬件清单及功能解析,适合零基础爱好者入门。核心部件包括ESP32-S3主控、INMP441麦克风、Max98357A音频放大器和3W小喇叭等,总成本约100元。文章从核心到外围逐一讲解每个模块的作用、参数和连接方式,并提供系统搭建思路、供电方案和购买建议。新手可先购买基础部件,逐步学习面包板搭建、程序编写和功能调试。此外还介绍了安全注意事项和扩展玩法,如物联网功能和多设备联动。通过这套方案,爱好者可以亲手打造具备语音识别、音频播放和灯光反馈的可交互设备。

2026-01-07 17:03:54 557

原创 【给ESP32-S3配上好声音】音频“放大镜”MAX98357A

摘要(147字) MAX98357A是一款专为微控制器设计的数字功放芯片,可解决ESP32等MCU音频输出功率不足的问题。它通过I2S接口接收数字信号,内部完成数模转换和D类放大,输出3W功率驱动扬声器,效率超90%。相比传统方案,其优势在于:即插即用(自动识别时钟)、高音质(24bit/96kHz)、极简电路(仅需3根信号线)和灵活增益调节。使用时需注意GAIN引脚配置,避免悬空。配合Arduino库可快速实现音频播放,是物联网音频项目的理想选择。

2026-01-07 14:49:41 601

原创 数字信号 vs 模拟信号【一文掌握】

本文系统比较了模拟信号与数字信号的核心差异。模拟信号是连续变化的自然信号(如黑胶唱片、温度计),而数字信号是离散的二进制数据(如MP3、电子书)。关键区别包括连续性、抗干扰性、存储方式等。文章详细解释了模数转换(ADC)的三步过程(采样、量化、编码)及其参数(采样率、比特深度),并通过Python代码可视化两种信号。虽然数字信号在多数现代应用中占优,但模拟信号在特定场景仍不可替代。最后指出未来趋势是数模融合,两者互补共存于信息世界。

2026-01-07 14:34:18 1305

原创 【INMP441】 MEMS麦克风,让硬件“听得见”,更要“听得清”

INMP441是一款数字MEMS麦克风,采用PDM接口输出高质量数字音频信号。相比传统模拟麦克风,它具有高度集成、抗干扰强、功耗低等优势,支持通过时钟启停实现软件控制开关。该麦克风体积小巧但功能强大,内置MEMS传感器、ADC转换器等模块,适合智能音箱、语音遥控等应用。工程师可通过ESP32等主控芯片轻松连接INMP441,利用多麦克风阵列实现波束成形等高级功能。INMP441展现了数字音频采集的先进技术,为创客和智能硬件开发者提供了优秀的音频解决方案。

2026-01-07 13:40:53 992

原创 【深度趣味】电子世界的语言接口:引脚(Pin)

芯片引脚是电子元器件与外界交互的关键接口,具有三大核心功能:电力供应(VCC/GND)、信号传输(数字/模拟/通信引脚)和特殊功能(PWM/中断等)。引脚具有多重身份,可通过不同协议形成"社交网络",但需注意其电气极限。通过Arduino实验可见,引脚能将简单电平转化为有意义信号。使用引脚需遵循"先规划、留余地"原则,避免功能冲突。引脚本质是硬件系统的对话门户,理解其特性可实现电子世界与创意的连接。

2026-01-07 12:57:29 813

原创 ESP32-S3 (N16R8) 的型号【命名解读】

ESP32-S3是乐鑫科技推出的高性能AI加速MCU,搭载双核Xtensa LX7处理器,具备DSP指令(高效数字信号处理)、向量指令(批量数据处理)和USB OTG(直接连接外设)功能。型号后缀"N16R8"表示QFN 7x7封装、16MB闪存和8MB PSRAM,适合物联网、图像/语音处理等应用。该系列平衡性能与成本,N16R8配置尤其适合需数据处理和大存储的项目。

2026-01-07 11:47:44 975

原创 乐鑫科技:中国物联网芯片的隐形冠军【从ESP8266到ESP32】

乐鑫科技是中国领先的物联网芯片设计公司,专注于Wi-Fi和蓝牙无线通信芯片研发。其明星产品ESP8266和ESP32系列以高性价比和开源生态著称,在智能家居、消费电子等领域广泛应用。乐鑫芯片具备卓越的无线性能、丰富外设接口和低功耗特性,支持Arduino、MicroPython等多种开发方式。作为物联网开发的首选平台,乐鑫为开发者提供了完善的技术支持和学习资源,正推动着AIoT和工业物联网的创新发展。

2026-01-07 10:01:07 1133

原创 【硬件基础课】电路板和单片机,傻傻分不清?

本文通俗易懂地解释了电路板与单片机的区别和联系:电路板相当于电子设备的"身体",提供机械支撑和电气连接;单片机则是"大脑",负责运算和控制。文章详细介绍了电路板的结构和单片机的工作原理,并阐述了它们在电子产品中的协同关系。针对初学者,还推荐了使用开发板进行学习的建议,帮助快速掌握嵌入式系统的基本概念。通过身体与大脑的生动比喻,使复杂的电子概念变得清晰易懂。

2026-01-07 08:29:52 246

原创 深度解析Docker卷与挂载目录的奥秘【LocalAI模型下载后,文件去哪了?】

LocalAI的Dockerfile这个问题是Docker挂载机制和LocalAI默认配置共同作用的结果。LocalAI Dockerfile中定义了VOLUME,为和创建了匿名卷当绑定挂载失败时,Docker会回退到使用这些匿名卷Windows路径权限问题可能导致绑定挂载失败解决方案:确保目录权限正确,或使用命名卷通过理解Docker的存储机制,我们可以更好地控制数据的位置,确保模型文件存储在预期位置,便于备份和管理。记住:在Docker世界中,明确性优于隐式行为。

2025-12-31 11:08:15 849

原创 【深析】 Docker Desktop 中的容器文件系统:OverlayFS vs Containerd Snapshots

本文深入解析了Docker Desktop中两个关键存储路径的区别:Containerd快照路径和Docker OverlayFS路径。通过LocalAI容器案例,揭示了两者在管理者、用途和数据内容上的差异:Containerd路径提供容器基础镜像快照,而Docker路径反映运行时状态。文章详细说明了挂载覆盖机制,验证了Windows主机路径与容器内路径的映射关系,并提供了实用命令验证存储详情。最后指出开发者需注意数据实际存储位置、性能影响和备份策略,为Docker文件系统管理提供了重要参考。

2025-12-30 16:50:13 645

原创 【Docker Desktop for Windows】 两个 volumes 目录的区别

本文解析了Docker Desktop for Windows在使用WSL 2后端时出现的两个volumes目录的区别。主要目录\\wsl.localhost\docker-desktop\mnt\docker-desktop-disk\data\docker\volumes是持久化数据存储区,用于长期保存容器卷数据;而\\wsl.localhost\docker-desktop\tmp\docker-desktop-root\var\lib\docker\volumes属于临时根文件系统,可能包含运行时临

2025-12-30 16:11:44 1001

原创 【手搓 Docker 卷 volumes】从 `docker volume create` 到落盘位置的最后1公里

本文详细介绍了Docker Volume的使用方法,包括创建、查找路径、备份迁移等操作。Docker Volume是官方推荐的数据持久化方案,生命周期与容器解耦,支持跨平台使用。文章提供了三端(Linux/macOS/Windows)的卷存储路径速查表,并演示了卷的日常操作"四板斧":自动创建、只读挂载、预填充和备份还原。重点讲解了如何将卷迁移到不同主机,即使驱动不同也能实现无缝迁移。此外还包含匿名卷清理和性能优化建议,最后用一条命令总结了Volume的核心操作流程。

2025-12-30 16:07:03 993

原创 Docker Volumes详解

Docker Volumes是容器数据持久化的核心机制,它允许数据独立于容器生命周期存在,支持多容器共享和高效存储。本文全面介绍了Volumes的特点、类型(本地/网络/自定义)、创建使用方法、适用场景及最佳实践,并对比了与Bind Mounts的区别。通过合理使用Volumes,可以确保数据库、应用数据等关键信息的持久保存,同时实现跨容器数据共享和性能优化。文章还涉及网络Volume的远程存储方案和自定义驱动开发,为复杂场景提供了解决方案。掌握Volumes技术对构建可靠容器化应用至关重要。

2025-12-30 09:42:01 779

原创 【Docker命令】运行支持GPU的本地AI服务

本文详细解析了一条Docker命令,该命令用于启动支持NVIDIA GPU加速的本地AI服务。命令包含基础指令、交互模式、容器命名、端口映射、GPU支持和镜像指定等关键组件。文章深入分析了LocalAI框架的技术特点、CUDA 12生态系统,并列举了典型应用场景和进阶配置示例。同时提供了故障排除指南和性能优化建议,帮助开发者快速部署和管理本地AI服务。这种容器化部署模式体现了现代AI应用的最佳实践,兼顾了性能、安全性和管理效率。

2025-12-30 08:57:53 1002

原创 【Docker使用】从拉取到运行

本文分享了使用Docker部署LocalAI大模型服务的实践经验。详细解析了Docker镜像查找流程、参数配置、分层存储机制及镜像管理方法,包括镜像下载过程、存储位置、删除影响等。同时提供了常见问题解答,如分层存储优势、资源清理、镜像备份等实用技巧。通过这次实践,作者深入理解了Docker的工作原理,为后续应用部署和管理提供了宝贵经验。

2025-12-29 14:26:57 575

原创 Docker镜像删除失败?一个容器占用的经典案例与完整解决流程

摘要: 开发者在删除Docker镜像时遇到"image is being used by running container"报错,发现已退出的容器仍会占用镜像。通过docker ps -a查看关联容器后,使用docker rm删除这些容器才能成功删除镜像。文章分析了Docker的设计机制(保持容器-镜像关联便于调试和恢复),并提供了多种解决方案:强制删除运行中容器、批量清理技巧、预防措施(自动清理策略、维护脚本)等。最后强调理解Docker状态管理和正确清理流程(先容器后镜像)的重要性

2025-12-29 12:20:21 952

原创 如何深入理解 `docker ps` 输出:从容器健康状态变化说起

本文通过分析Docker容器的状态变化,深入解读了docker ps命令输出的技术细节。以LocalAI服务部署为例,展示了容器从启动到就绪的生命周期过程,重点解析了健康状态变化的含义及其背后的技术实现(如CUDA初始化、模型加载等)。文章提供了实用的容器监控技巧和故障排查方法,包括日志查看、资源监控和端口验证等,并总结了生产环境中的最佳实践,如自动化监控、日志管理和资源限制配置。这些内容为理解和优化容器化AI服务部署提供了有价值的参考。

2025-12-29 10:26:46 842

原创 【Docker命令】以LocalAI部署为例

本文详细解析了一个典型的Docker命令结构,通过分解docker run命令的各个参数(如后台运行、容器命名、端口映射、GPU支持、数据卷挂载等),帮助初学者理解Docker命令的基本组成。文章采用生活化比喻解释技术概念,并提供命令修改示例和常见问题解答,最后总结出"Docker命令学习路径"。全文旨在让读者掌握分析和修改Docker命令的方法,降低学习门槛,提升容器化技术的实践能力。

2025-12-29 10:10:00 695

原创 【LocalAI】 本地部署图文教程(Windows + GPU + 多模态模型)

返回首页,刷新,我们就可以选择刚才下载好的这个模型,并且,我们上传一个图像,然后附上文字,描述图片。服装:猫咪穿着一套完整的灰色老鼠造型连体衣,设计非常逼真: 头部:帽子部分有两只大大的、圆形的米色耳朵,耳朵内侧是浅粉色,造型非常卡通。身体:衣服的腹部部分是米色的,中间有一条浅色的横向条纹,下方是白色的“肚兜”部分,后背还有一个白色的蝴蝶结装饰。背景与环境:猫咪坐在一个灰色的毛绒地毯上,背景是素净的浅色墙壁,环境简洁,突出了猫咪本身。四肢:衣服覆盖了猫的四肢,前爪和后爪都清晰可见,爪子的毛色与身体协调。

2025-12-26 12:10:33 1123

原创 Docker vs Podman:两大容器引擎

Docker与Podman对比分析 Docker和Podman是两种主流的容器技术,各有特点。Docker采用守护进程架构,提供完整的容器生态系统,包括镜像仓库和编排工具。Podman由Red Hat开发,采用无守护进程设计,原生支持rootless容器和Kubernetes Pod概念,安全性更高。两者CLI命令基本兼容,但Podman在rootless容器、systemd集成等方面更具优势,而Docker的生态更成熟。实际使用中,Podman适合注重安全性的场景,Docker则更适合需要完整生态支持的开

2025-12-25 15:16:57 773

原创 【2026版】Windows 安装 Docker 保姆级教程

为 Docker 在 Windows 上运行“铺路”——启用系统自带的虚拟化组件,让 Docker 能创建容器运行所需的“沙箱环境”。普通用户只需按步骤执行,重启后即可继续安装 Docker Desktop~

2025-12-25 11:59:53 1082

原创 【2025最新方案】C盘空间告急?手把手教你安全将已安装软件迁移到D盘

摘要: 本文针对C盘空间不足问题,详细介绍了四种安全迁移已安装软件到D盘的方法。首先指出直接剪切粘贴的错误性,并列出可迁移与不建议迁移的软件类型。四种方法包括:Windows系统自带功能(适用于Microsoft Store应用)、专业迁移工具(推荐大多数用户)、卸载重装法(最稳定可靠)和符号链接法(高级用户适用)。文章还提供了迁移前后的注意事项、验证步骤及常见问题解决方案,最后给出预防C盘再次爆满的建议。建议用户根据软件类型选择合适的迁移方法,并遵循"备份先行,工具辅助,测试验证"的原

2025-12-22 12:37:51 1586

【批量查看LabelMe标注信息】图像处理+验证工具

【是否好用?】是的,有任何问题,随时联系! 【内容概要】:这是一款专为LabelMe标注文件设计的exe查看工具,支持一次性加载多个标注文件(JSON格式),并在图像上直观展示标注框和标签。它还提供颜色自定义、分页浏览及自适应布局等功能,帮助用户快速且准确地检查和验证大量图像的标注结果。 【适用人群】:适合研究人员、工程师及其他需要高效管理与审查图像标注数据的专业人士。 【使用场景及目标】:用于简化大规模图像标注后的审核流程,确保每个标注都符合预期标准,提高标注结果检查效率,保证数据质量,从而提升后续分析或建模工作的准确性。 【使用方法】:①下载并运行程序,并在Windows操作系统中执行。②选择文件夹:启动程序后,点击“选择json和原图路径”按钮,指定包含标注文件和对应图像的文件夹位置。③自动加载与浏览:程序将自动加载所有相关文件,用户可通过界面按钮轻松切换不同图像进行查看。④自定义设置:通过菜单栏进入设置选项,调整标签颜色等显示偏好,以满足个人工作习惯。⑤查看详细信息:每张图像下方会列出其标注详情,包括物体类别和数量,便于快速了解标注内容。

2024-12-13

【Python项目源码】+【像素绘制器】+【包含环境配置,code源码,导出步骤,代码注释】

【介绍】像素绘图器源码项目是一个面向Python学习者的实用资源,特别适合那些希望深入学习PyQt5图形用户界面编程的学习者。该项目提供了一个完整的像素绘图应用示例,包括窗口创建、事件处理、图像保存等多个实用功能。它不仅能够帮助学习者理解PyQt5的基本概念,还能够通过实际操作加深对图形界面编程的理解。 【怎么用?】这个项目易于上手,因为它包含了详细的代码注释和结构清晰的文件组织,使得学习者可以快速理解每个部分的功能和实现方式。通过下载和运行这些源码,学习者可以直接在本地环境中进行测试、修改和扩展,从而在实践中提升编程技能。 【谁可以用?】无论是进行个人项目实践,还是作为学习PyQt5的辅助材料,这个源码项目都是一个宝贵的资源。

2024-12-12

【exe应用程序】+【像素绘图器】

【简介】像素绘图器EXE是一款便捷的像素艺术创作软件,支持自定义画布尺寸,提供手动绘制及自动绘制矩形框功能。 【目标】用户可通过鼠标操作绘制或清除像素点,保存作品为PNG格式,并附带TXT和JSON文件记录详细信息。 【特色】软件界面简洁,易于上手,适合所有层次的像素艺术爱好者。 【怎么用?】启动软件后,设置画布尺寸,即可开始创作,通过菜单栏进行保存、清除和缩放操作。

2024-12-12

【图片批量重命名工具】+exe应用+【支持中文名改为拼音】+【多线程加速处理】

【内容概要】:此exe应用程序用于批量检查和重命名指定目录下的图像文件,支持自动检测不符合规则的文件名,并提供中文转拼音、特殊字符处理等功能。 【特色】:程序可将中文字符转换为拼音,替换特殊字符为下划线,支持多线程操作以加快处理速度,实时更新进度条反馈任务状态。 【适用人群】:适合摄影师、设计师等需要管理大量图像文件的专业人士。 【使用场景及目标】:简化大型图像库的管理和组织,如清理摄影项目结束后照片文件夹中的不合规文件名,确保上传网络平台前媒体文件命名格式一致,显著减少手动调整时间,提高效率。 【使用方法】: 1. 启动与设置:运行程序,点击“选择目录”挑选目标文件夹。 2. 检查文件:点击“检查不符合要求的图像”,扫描并列出不合规图片。 3. 配置选项:根据需要勾选“中文转换为拼音”。 4. 开始重命名:确认设置后,点击“重命名图像文件”,可指定线程数(默认4个)以加速处理。 5. 监控进度:通过进度条和文本框查看进展,完成时会弹出提示。

2024-12-10

【图像批量下载】+【拖拽txt文档 或 输入多个图片URL】+【自定义规则重命名】+【windows实用工具】

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用步骤】:双击启动软件后,上传txt【里面要写好图像的网络url,一行一个url】,或者手动输入多个url到输入框【要求也是一行一个url】,然后,选择“要保存的图像文件夹”,点击“批量下载”按钮,就会开始下载,下载完成后,会给出下载成功与否的信息:成功了多少图,失败了多少图,一共有多少图。 【特色】可以按照你自己设定的规则,进行图像重命名。可选项有:图像编号,图像尺寸,图像拓展名,图像在网站上原来的名。

2024-12-06

【OpenCV-Gpu版本】Windows安装CUDA版OpenCV+编译后的结果

编译后的结果文件,文件资源解压后是1.3G,我在我自己电脑上编译了12个小时。 【谁可以用?】想要在Windows上使用opencv的gpu版本,进行加速图像处理。c++代码或者python代码都可以使用。 【是否好用?】是的,请放心!只出好用资源!

2024-12-05

【字幕SRT翻译器】+【支持多种语言】+【大模型翻译,效果一级棒】+【永久不过期】

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用方法】①启动程序:双击 字幕翻译.exe 启动程序进行安装。②打开并导入文件:点击“导入文件”,选择需要翻译的字幕文件( .srt)。③选择语言:选择源语言和目标语言。④开始翻译:点击“开始翻译”按钮,开始逐行翻译,等待翻译完成【可逐行修改】。⑤SRT下载:下载翻译后的srt文件。 【软件特色】 1. 大模型翻译,结果质量高,中文很流畅自然,信达雅。 2. 实时输出,本地永久可用,不会过期。 3. 可修改翻译结果,可保存结果。 【支持多种语言】 源语言和目标语言:支持 "中文", "英文", "日文", "韩文", "法文", "西班牙文", "德文", "意大利文", "俄文"。

2024-11-08

【完整项目,可跑通,C++】mmdeploy部署++Windows+onnx模型+GPU版预测

【是否好用】是的!资料绝对可靠,好用!有任何问题随时私信,帮你解决! 【使用步骤】1. 环境准备:安装 mmdeploy、ONNX Runtime 和 OpenCV,配置 CUDA。2. 模型准备:下载或训练 ONNX 模型并放置在指定路径。3. 图像准备:将待检测图像放入输入文件夹。4. 修改代码:设置模型及图像路径。5. 编译和运行:在 IDE 中编译并运行程序,处理图像。6.查看结果:检查输出文件夹中的检测结果。 【内容概要】本项目基于 mmdeploy 提供深度学习模型部署解决方案,支持在 Windows 系统上使用 ONNX 模型进行 GPU 加速的图像检测,用户可通过 C++ 程序实现物体检测和结果可视化。 【适用人群】深度学习研究人员、开发者、数据科学家和计算机视觉爱好者,便于快速部署和测试物体检测模型。 【场景及目标】工业检测、安防监控和自动驾驶等领域,目标是提供一个易用的工具,帮助用户高效处理图像。

2024-11-22

办公必备小工具+【筛选符合条件的文件】+【根据文件名和文件格式】

【适合谁用?】这款文件筛选器应用程序,适合任何需要管理大量文件的用户,如办公室工作人员、学生、程序开发者以及数据整理员。它特别适用于需要按条件筛选和移动文件的场景。 【怎么用?】下载后,打开程序,选择要搜索的文件夹并输入关键字,还可以选择文件类型的后缀名。之后,选择目标文件夹并点击“移动文件”按钮,程序会自动处理符合条件的文件并移动到指定位置。 【可以帮你解决什么?】此工具能够快速筛选并移动大量文件,避免了手动查找和移动的繁琐,提升了文件管理效率。特别适合需要定期整理文件、归档或迁移特定文件的用户。 【是否好用?】应用程序界面简洁易懂,操作简单流畅,且支持多线程处理,能够保证在处理大量文件时不发生卡顿。一经下载,永久可用。

2024-11-15

【MFC软件开发】+【C++OpenCV图像处理】+【完整代码+已经跑通】+带界面

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用方法】:①将项目下载后,解压,使用vs打开项目中的.sln文件:②配置opencv环境变量 [注意!搞清楚,你自己是debug还是release] ;③点击绿色小三角[完成编译,链接,运行],就可以看到运行界面;④点击rc文件,修改界面;⑤修改Dlg相关的cpp和h文件,实现自己的思路;⑥重新编译运行即可。 【内容概要】:使用MFC+VS软件,制作一款自己的桌面版/嵌入式软件。 【能学到什么】:MFC;VS;软件开发流程。 【阅读建议】:适合不懂MFC的初学者。

2024-10-14

【完整CV项目】+目标检测+ultralytics+火灾检测+完整数据集+模型训练+windows和linux部署+环境配置

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用方法】:①直接使用:传入一张图,运行infer.py,即可给出:火灾的位置和数量。②训练自己的目标检测模型:下载后,用自己的数据集进行labelme标注;根据train_my.py训练模型,并根据export_model.py导出模型;按照项目文件huanjing.txt配置环境,并根据infer.py进行预测。 【内容概要】:利用计算机视觉技术进行火灾检测,采用Ultralytics的YOLO模型进行目标检测。项目包括完整的数据集准备、模型训练以及环境部署和配置。具体内容涵盖:1) 数据集收集与标注,2) 使用Ultralytics YOLO进行模型训练,3) 环境配置与部署,如Python环境、相关依赖库等。 【适用人群】:对计算机视觉有一定了解的人员、工程师和开发者。特别适合希望通过机器学习技术提升火灾预警系统性能的开发者,以及希望应用YOLO进行目标检测的个人。 【使用场景】:1. 消防监控系统;2. 工业安全;3. 智能家居;4. 无人机巡检。部署在智能摄像头和监控系统中,实现实时火灾检测与报警。

2024-10-28

【20种字体ttf文件】+经典好看

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用方法】:1.下载并解压缩“20种字体ttf文件.zip”。2.打开解压后的文件夹,浏览可用的字体文件。3.选择需要安装的字体,双击字体文件(.ttf),在弹出的窗口中点击“安装”按钮。4.安装完成后,打开你常用的设计软件(如Adobe Photoshop、Illustrator、Microsoft Word等)。5.在设计软件中选择已安装的字体,开始你的设计工作。【资源描述】:包含20种不同的字体文件(.ttf)。 【适用人群】:平面设计师;网页设计师;UI/UX设计师;学生和老师;IT编程。

2024-10-21

【windows必备】+实用工具+【一件获取所有文件名】+可复制+归类汇总

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【如何使用】:1.下载并安装该工具到Windows电脑。2.打开工具后,选择需要获取文件名的文件夹路径。3.工具将立即生成该文件夹下所有文件名列表,文件名可以直接复制。 【资源描述】: 这是一款专为Windows电脑用户设计的实用工具,能够帮助你快速获取指定文件夹下的所有文件名,并将其以文本形式归类汇总。工具操作简便,支持一键获取所有文件名,文件列表可以直接复制到其他文档或表格中,方便管理和归档。 【内容概要】: 支持一键快速获取文件夹内所有文件名,包括子文件夹中的文件。 获取的文件名可轻松复制到剪贴板,用于其他软件(如Word、Excel)的整理或分享。 提供文件名归类汇总功能,便于文件管理和归档。 用户友好界面,简单易用。 【适用人群】: 文件管理需求高的办公室工作人员; 需要归类整理大批文件的个人用户; 需要批量管理文件的设计师、程序员和文档管理者; 需要进行文件备份、归档的项目经理; 【使用场景】: 快速整理和归类硬盘中某个文件夹下的文件。 将文件名复制到Excel或Word中进行进一步分析或管理;

2024-10-21

【日常办公必须工具】文件管理+批量移动文件+实用工具+软件开发+windows必备

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用方法】:双击运行exe程序后,首先选择需要搜索的文件夹路径,然后可以指定文件名中需要包含的字符以及文件的扩展名。接下来,选择文件移动的目标路径,并点击“移动文件”按钮开始操作。程序会自动筛选出符合条件的文件并将其移动到指定位置。在文件移动过程中,可以通过状态栏查看当前的操作进度。 【内容概要】:这是一个基于PyQt5框架开发的图形界面exe应用程序,主要用于帮助用户根据文件名中的特定字符和文件扩展名来筛选并移动文件。程序通过多线程处理文件操作,避免了界面在执行耗时任务时出现卡顿现象。此外,该应用还提供了实时的状态更新,以便用户了解文件移动过程中的详细情况。 【适用人群】:适合需要频繁对文件进行分类和整理的个人或团队,如程序员、资料管理人员等。 【使用场景及目标】:Windows电脑都可以使用,适用于任何需要根据文件名和类型快速整理文件的场景。例如,项目开发过程中产生的大量临时文件、日志文件等的清理;或是个人电脑中音乐、图片、文档等不同类型的文件分类管理。

2024-11-01

【将图像划分为n份工具】

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用方法】:①打开 图像划分器.exe 应用程序。②选择或输入图像文件的源路径。③输入需要划分的份数。④输入每一份的名称和占比(百分比),需要确保总和为 100%。⑤点击“划分”按钮,就会自动将图像划分并复制到相应文件夹中。

2024-11-04

【Python项目】+图像划分多份+exe工具制作+PyQT5实现

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用方法】:①项目下载后,就会看到整个项目所需的环境配置文档。②可以看到整个py源码文件,可以修改源码。③包含打包为exe的命令。 【内容概要】:这款图像划分器工具基于 Python 和 PyQt5 开发,旨在按用户指定的份数和比例将目录下的图像文件划分并复制到子文件夹中。用户通过简洁的图形界面设置参数,工具自动完成图像分配和复制。 【适用人群】:适用于图像处理工程师、数据科学家、机器学习研究人员、计算机视觉开发者、教育从业者等需要批量管理图像文件的用户。 【使用场景及目标】:适用于需要按特定比例分配图像文件的场景,如创建训练集和测试集、准备教学资料等。目标是提高图像文件管理和分配的效率。

2024-11-08

【Python软件源码】+【SRT视频字幕翻译】

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【推荐人群】:Python学习爱好者 【使用方法】:下载项目,解压,就会看到完整的项目源码,可修改。 【项目资源】:源码,环境配置,打包为exe的方式。

2024-11-08

【windows实用工具】+【统计文件夹内所有文件(包含文件夹)大小】+【方便我们管理文件 】

【是否真的好用?】是的,请放心,不用担心!如有任何问题,随时联系! 【使用步骤】:双击启动软件后,点击“选择文件夹”按钮,选择文件夹。点击“开始计算”按钮,进行计算。计算完成后,可以实时查看文件夹内,各个文件的大小,并选择导出为Excel 格式文件,以便记录或进一步分析。 【特色】:如windows自带的功能,不显示文件夹大小,所以这个软件很有优势!

2024-11-13

【PaddleClas模型训练软件.exe】+【可本地训练】+【训练过程可视化】+【可模型导出】+【可本地测试】+【给测试报告】

【制作周期】前后制作了6个月,测试了很久,所以稳定性和功能不用担心!!! 【使用步骤】特别简单。1. 下载软件,按照步骤提示安装。2. 打开帮助,查看详细的使用说明。 【软件描述】PaddleClas模型训练软件。 【软件制作初衷】不需要懂太多技术,就可以训练自己的图像分类模型。 【使用人群】想要在windows上使用带显卡的电脑训练图像分类模型。 【软件特色】模型过程可视化;整理好图像就可以训练模型;模型训练完成可以直接测试模型效果,并且给出报表,可以用于后续数据分析。 【有问题怎么办?】有任何问题随时联系,保证让你使用满意!

2024-11-14

国庆庆祝软件+可直接操作+可修改代码+最新出炉+qt Creater实现+qt6版本

【内容概要】: 本资源提供了一款基于Qt Creator实现的国庆庆祝软件,采用Qt 6版本开发,压缩包内包含完整的源代码及项目文件,支持直接在Qt Creator中打开并运行。软件具备节日祝福语生成、国庆历史展示、活动信息发布等功能,界面友好,操作简便。 【适用人群】: 适合对国庆主题软件开发感兴趣的程序员、学生及软件开发者。无论是希望快速开发国庆节相关应用的专业人士,还是希望通过修改代码来自定义功能的学习者,都能从中受益。 【使用场景】: 广泛应用于学校、社区、企事业单位等场合,用于庆祝国庆节、发布活动通知、展示国庆历史文化等内容。无论是作为教育工具、宣传平台还是娱乐应用,该软件都能提供实用的功能支持。 【目标】: 旨在为用户提供一个现成的国庆庆祝软件,帮助快速部署国庆节相关活动,同时提供开放的源代码供进一步开发与定制。通过本资源,用户不仅可以直接使用软件,还能在此基础上进行功能扩展,满足个性化需求。

2024-09-06

【VS2019社区版安装包】

VS2019社区版安装包,直接安装,简单快速!

2025-12-18

YOLO11图像分类器MFC程序源码 - ONNX模型部署 - 支持GPU加速 - 图像自动分类工具

资源提供完整的基于YOLO11模型的图像分类器MFC应用程序源码,实现高效的图像自动分类和批量处理功能。采用C++开发,集成ONNX Runtime推理引擎和OpenCV图像处理库,能够快速准确地对大量图像进行智能分类。 【核心功能】 智能分类:集成YOLO11分类模型,支持高精度图像识别,实时显示分类置信度。 批量处理:支持文件夹批量处理,自动创建分类子目录,保留原始图像质量。 现代化界面:多线程处理机制,实时进度显示和图像预览,双缓冲绘图无闪烁。 灵活配置:支持CPU/GPU双模式推理,动态模型加载,可配置预处理参数。 【技术特色】 开发环境:Visual Studio 2019+、MFC、C++17。 依赖库:ONNX Runtime、OpenCV、Windows API。 模型支持:YOLO11分类模型,兼容其他ONNX格式模型。 系统要求:Windows 7/10/11,支持CUDA显卡(可选)。 【应用场景】 图像数据集自动化整理分类。 基于图像内容的自动筛选。 图像识别算法的应用验证。 产品图像质量检测分类。 代码结构清晰,注释详细,适合学习ONNX模型部署、MFC开发,或直接用作图像分类工具。提供完整的项目文件,开箱即用,支持二次开发。

2025-10-17

【Python项目】+【大模型api接口实战】+图像分类

【项目来源】:淘宝客户需求,博主开发,有任何问题,欢迎私信,基本秒回。 【技术栈】:Python + PyQt5 + ZhipuAI API 【项目概述】:TB-ImgClassifier 是一个基于AI的图像分类工具,使用GLM-4V模型自动将图片分类到指定文件夹。支持识别真实猫、卡通/游戏场景、人物(细分性别与年龄组)等类别,并通过PyQt5提供可视化操作界面。核心功能包括多标签分类、自动目录生成和分类日志记录,适用于整理相册或素材库。 【使用方法】:下载后,解压,可以直接使用exe。

2025-07-19

【目标检测工具】Labelme转YOLO格式转换工具

【对应博客】https://blog.csdn.net/weixin_45037357/article/details/149242603?spm=1001.2014.3001.5502 【工具介绍】本工具用于将Labelme标注的JSON格式文件批量转换为YOLO格式的文本标注文件,适用于目标检测任务(如YOLOv5-v12等)。采用Python开发,基于PyQt5实现直观的图形界面,支持Windows系统一键运行。 【核心功能】批量转换:自动扫描输入目录下的所有Labelme JSON文件;智能分类:自动生成classes.txt类别映射文件;选项灵活:支持是否复制原始图像到输出目录;进度显示:实时进度条和状态提示;跨平台:提供.exe可执行文件,无需安装Python环境。 【使用说明】输入目录:选择包含Labelme JSON文件的文件夹;输出目录:指定YOLO格式文件的保存位置;勾选选项:是否复制图像文件;开始转换:点击按钮执行转换。 【适用场景】从Labelme标注迁移到YOLO训练;目标检测数据预处理。 【注意事项】仅支持矩形框标注转换;确保JSON文件与图像在同一目录(若勾选复制图像)。 【适用人群】计算机视觉开发者;目标检测数据标注人员;深度学习初学者。

2025-07-10

【Yolo11图像分类模型】【Windows平台】【onnx加速部署】【经过测试很稳定】

【新鲜】刚刚出炉!已经下载,永久使用。 【你的痛点】想要在任何电脑上使用cpu部署yolo11图像分类模型?苦于C++不熟练? 【达到效果】windows上只要有cpu就可以进行图像分类。 【简单操作】只需要替换你自己的模型即可!如何训练模型如果不会,可以参考我之前的文章(私信我发你)。

2025-06-09

【Windows电脑Yolo 11图像分类Openvino加速CPU部署】+【完整C++项目代码】+【可直接替换模型】

【Windows+YOLOv11+OpenVINO图像分类】完整C++项目代码,支持CPU加速推理! 本资源提供开箱即用的YOLOv11图像分类部署方案,基于OpenVINO优化,无需GPU即可高效运行。包含: 【​​完整C++代码​​】:集成数据加载、OpenVINO推理引擎调用(支持动态输入)、结果可视化(类别/置信度显示)。 【预训练模型​​】:提供转换好的ONNX、IR(.xml/.bin)格式模型,支持自定义模型替换(兼容YOLOv8/v10等结构)。 ​​适用场景​​:工业质检、安防监控等低功耗设备图像分类任务,实测i5-12400F可达50+ FPS! 点击下载即用,注释详尽,新手友好!

2025-06-06

【完整部署代码】YOLOv11图像分类器(ONNX Runtime C++实现)​

【请放心下载!】基于YOLOv11的轻量级图像分类器​​,提供完整的C++实现方案,支持ONNX模型部署,包含预处理、推理和后处理全流程代码。 【特别说明​​​​】 已修复所有DEBUG_PRINT_NOEND编译错误(基于用户真实报错解决);提供动态输入尺寸支持,适配不同分辨率图像;包含详细的错误检测机制(NaN/Inf值检查) 【核心功能​​】 ​​跨平台支持​​:兼容Windows/Linux,依赖OpenCV和ONNX Runtime ​​高性能推理​​:自动检测GPU加速(CUDA)或回退CPU模式 【​​完整工具链​​】 模型加载与验证;图像预处理(支持动态尺寸调整);分类结果后处理;调试日志系统。 【​​适用场景​​】 工业质检;医学图像分类;嵌入式设备部署;学习ONNX Runtime C++接口 。

2025-05-23

完整代码(代码重构后):cppYolo11OnnxPredict.zip【使用yolo11在windows的cpu上部署图像分类模型】

本资源提供基于YOLOv11的轻量级图像分类模型​​CPU端部署方案​​,使用纯C++实现ONNX推理,无需依赖GPU,开箱即用! 【完整工程​​】:包含预处理、模型加载、推理、后处理全流程代码,支持直接替换自定义ONNX模型(兼容YOLOv8/v11等架构)。 ​​【高性能优化​​】:针对CPU进行多线程加速,实测Intel i5-12400F单帧推理仅需120ms,效率远超Python版本。 【​​即插即用​​】:提供预训练好的图像分类ONNX模型(支持1000类ImageNet标签),用户可一键替换为检测/分割模型。 ​​【详细文档​​】:含环境配置指南(OpenCV+ONNX Runtime)、API接口说明、常见问题排查,新手友好。 ​​【适用场景​​】:边缘设备(工业摄像头/Raspberry Pi)图像分类;快速验证模型CPU端推理性能;C++项目集成深度学习模型。 【​​资源文件】​​:src/:C++核心代码(含注释);models/:预训练ONNX模型+标签文件。 ​​【备注​​】:代码已测试Windows平台,如需技术支持可私信我。

2025-05-09

项目文档:cppYolo11OnnxPredict.zip【使用yolo11在windows的cpu上部署图像分类模型】+完整代码+【可直接替换模型】

本资源提供基于YOLOv11的轻量级图像分类模型​​CPU端部署方案​​,使用纯C++实现ONNX推理,无需依赖GPU,开箱即用! 【完整工程​​】:包含预处理、模型加载、推理、后处理全流程代码,支持直接替换自定义ONNX模型(兼容YOLOv8/v11等架构)。 ​​【高性能优化​​】:针对CPU进行多线程加速,实测Intel i5-12400F单帧推理仅需120ms,效率远超Python版本。 【​​即插即用​​】:提供预训练好的图像分类ONNX模型(支持1000类ImageNet标签),用户可一键替换为检测/分割模型。 ​​【详细文档​​】:含环境配置指南(OpenCV+ONNX Runtime)、API接口说明、常见问题排查,新手友好。 ​​【适用场景​​】:边缘设备(工业摄像头/Raspberry Pi)图像分类;快速验证模型CPU端推理性能;C++项目集成深度学习模型。 【​​资源文件】​​:src/:C++核心代码(含注释);models/:预训练ONNX模型+标签文件。 ​​【备注​​】:代码已测试Windows平台,如需技术支持可私信我。

2025-05-09

【DeepSeek大模型应用:视频字幕自动生成+双语字幕srt生成】+【效果超级好】+【视频博主必备+软件永久免费】

【是否好用?】是的,请放心,有任何不明白,请随时联系作者,1小时内,为您解答。 【内容概要】本工具基于AI语音识别与DeepSeek深度翻译技术,可自动为YouTube视频或本地音视频文件生成高精度双语字幕(源语言+中文),支持输出三种字幕格式(双语对照、纯原文、纯译文),解决人工听译效率低、多语言字幕制作难的问题。 【适用人群】视频创作者/自媒体从业者:快速为作品添加专业双语字幕;教育工作者:为教学视频生成可编辑字幕;语言学习者:通过双语对照提升听力与翻译能力;跨国企业:简化多语言视频内容本地化流程。 【使用场景及目标】一键生成YouTube长视频字幕;本地MP4/MP3文件快速转字幕(无需手动剪辑) 【使用方法】 1. 输入YouTube链接或选择本地文件 2. 配置API密钥(内置引导文档) 3. 点击生成按钮,实时查看语音分段与翻译进度 4. 完成后自动保存三种字幕文件(保存路径可自定义)

2025-02-18

【博主必备神器】+【内容创作AI工具】+【视频转博客】+【一经下载,永久免费】

【是否好用?】:是的,请放心,有任何不明白,请随时联系。 【内容概要】:这是一款能将 YouTube 视频转为博客文章的工具。通过提取视频音频,语音识别,再用 AI 生成博客,含截图预留位,快速将视频整理成可读文章,提升工作效率。 【适用人群】:适合需将 YouTube 视频转文字的人群,特别是生成博客。 【使用场景及目标】:在办公或家中处理视频时,可快速将 YouTube 视频转为结构化博客文章;在知识共享或教育培训中,将视频整理为易读易传播的文字。目标是高效提取视频关键信息,转化为有吸引力、可读性的博客,满足知识传播、内容创作、教育培训需求。 【使用方法】:参见博客:https://blog.csdn.net/weixin_45037357/article/details/145587717?spm=1001.2014.3001.5501

2025-02-12

【GitHub跑通项目:YOLOs-CPP】+【计算机视觉】+【YOLOv11模型】+【windows+Cpp+ONNX+cpu部署】+实例分割

用于部署:Windows+cpp+cpu+onnx+yolo-seg11模型+实例分割。精简后的完整项目。 【好用码?】三个字:请放心!有问题私信,1h内回复你! 【精简前资源地址】https://download.csdn.net/download/weixin_45037357/90399109?spm=1001.2014.3001.5503 【github项目源地址】https://github.com/Geekgineer/YOLOs-CPP 【博客参考地址】https://blog.csdn.net/weixin_45037357/article/details/145702832?spm=1001.2014.3001.5502

2025-02-18

【人工智能比赛获奖源码】+【PyQt5混元大模型】+【桌面聊天应用】+【效率辅助工具】

【是否好用?】是的,本项目已经获奖,请放心,有任何不明白,请随时联系。 【内容概要】:基于PyQt5开发的跨平台桌面聊天助手,集成腾讯混元大模型API,支持Markdown消息渲染、主题切换、聊天记录导出PDF/TXT、自定义背景等功能。 【适用人群】:Python开发者、AI应用爱好者、需要本地化聊天工具的用户。 【使用场景及目标】:办公场景的智能问答辅助、学习场景的知识查询、日常对话交流,提升工作效率与信息处理能力。 【使用方法】:1. 解压zip后进入dist目录双击.exe文件;2. 输入问题后点击发送按钮(支持回车发送);3. 使用菜单栏切换主题/导出记录;4. 点击"停止输出"可中断AI响应。 【注】打包时需确保包含以下资源:resources/目录的字体和logo;index.html网页模板文件;PyQt5的platforms插件目录。

2025-02-19

【GitHub跑通项目:YOLOs-CPP】+【计算机视觉:完整项目】+【YOLOv5-v11模型】+【Cpp+ONNX+cpu部署】+【目标检测+实例分割】

【是否好用?】 是的,开箱即用,已适配Windows环境,支持主流YOLO模型推理。 【内容概要】 支持YOLOv5-11系列模型(ONNX格式)的C++高性能推理; 集成OpenCV图像处理与ONNX Runtime加速; 提供摄像头实时检测、本地图像/视频检测接口; 包含编译好的Windows可执行文件及依赖库; 【适用人群】 计算机视觉开发者(需C++基础); 边缘计算/嵌入式部署工程师; 需要脱离Python环境的研究者; 【使用场景及目标】 安防监控中的实时目标检测; 工业质检流水线部署; 低算力设备(如Jetson)的模型移植; 学术论文中的算法对比实验; 【使用方法】 参见博主系列文章:【git-hub项目:YOLOs-CPP】本地实现01-03 https://blog.csdn.net/weixin_45037357/article/details/145630944?spm=1001.2014.3001.5502

2025-02-18

【TensorRT部署YOLO项目:实例分割+目标检测】+【C++和python两种方式】+【支持linux和windows】

【是否好用】:是的,该工具基于深度学习,能高效精准地进行目标检测与实例分割,支持多语言和多平台,适用广泛,请放心使用,有疑问可随时联系。 【内容概要】 :基于 TensorRT 和 YOLO 算法的工具,含完整项目文档,支持 C++ 和 Python 开发,实现目标检测与实例分割双重功能,以 .zip 格式提供资源,可在 Linux 和 Windows 上运行。 【适用人群】 :开发者可集成功能到项目;研究人员用于算法测试与验证;企业组织用于监控、工业质检、交通管理等场景的目标检测与分析。 【使用场景及目标】 :在监控与安全领域实时监控目标;工业制造领域检测产品缺陷;智能交通领域辅助交通管理;医疗图像分析领域辅助诊断。目标是实现高效精准的目标检测与实例分割,优化性能,满足跨平台开发与部署需求。 【使用方法】 :下载 .zip 文件解压,根据操作系统搭建环境、安装库,阅读文档了解项目,准备数据并配置路径,运行程序(Python 脚本或 C++ 程序),最后查看输出结果。

2025-02-08

【MFC-PaddleClas图像分类】+带界面C++实现+项目源码

【使用方法】下载txt,根据百度网盘链接,下载整个项目源码。 【资源介绍】MFC-PaddleClas项目源码 【资源能干什么?】运行sln或者exe,输入图像地址和模型路径,可以批量进行图像分类,并给出预测结果。 【语言】c++ 【框架】MFC

2024-12-30

【可靠,放心下载】百度网盘中PaddleDetMfc相关资料分享+完整代码

内容概要:本文主要提供了名为“PaddleDetMfc-csdn”的zip压缩包文件下载链接与提取码,该资源位于百度网盘之上。 适合人群:有资源获取需求的人员。 使用场景及目标:当用户需要获得这份由csdn提供的PaddleDetMfc资料,但苦于网络搜索效率低下或者难以找到可信源时,可以通过本篇文章所提供的直链以及提取密码快速准确地取得所需资源。

2025-01-19

【图像分割领域】+【Segment Anything模型】+【C++本地部署】

【是否好用?】非常好用。有任何问题,随时联系!帮你解决! 【内容概要】:帮助用户在本地Windows环境中使用C++实现Segment Anything模型的部署和运行,无需依赖Python环境。 【适用人群】:适用于算法研发工程师、图像处理领域的研究人员以及对深度学习模型C++部署感兴趣的开发者。特别是那些需要在本地环境中快速部署和测试Segment Anything模型的用户。 【使用场景及目标】:用户可能需要在没有Python环境的Windows系统上部署和测试Segment Anything模型,或者需要将模型集成到C++项目中。这份资源旨在帮助用户实现这些目标,提供从零开始的详细步骤,确保用户能够成功运行模型并生成图像掩膜。 【使用方法】:下载并解压,按照我的博客文档,进行一步步操作。就可得到release的exe运行程序。

2025-01-01

【2025新软件】+文件批量下载器.exe+【批量下载神器】+【Windows必备】

【是否好用?】是的,请放心,有任何不明白,请随时联系。 【内容概要】:批量文件下载器是一款用于批量下载网络文件的桌面应用程序。用户可以通过上传包含下载链接的txt文件【一个下载链接是一行内容】,并选择一个下载目录,程序将自动下载所有链接中的文件,并在下载过程中显示进度和时间。 【适用人群】:需要批量下载文件的用户,如研究人员、学生、内容创作者等;对于需要从多个来源下载大量文件的用户,如下载论文、图片、视频等。 【使用场景及目标】:在进行学术研究时,批量下载文献或数据文件;在内容创作过程中,批量下载素材文件,如图片、音频等;在日常工作中,批量下载需要的文件,提高工作效率。 【使用方法】:打开批量文件下载器应用程序;点击“上传txt文件”按钮,选择包含下载链接的txt文件;点击“选择下载目录”按钮,选择一个文件夹作为下载目录;点击“下载”按钮,程序将开始下载文件,并在进度条和文本框中显示下载进度和状态;下载完成后,程序会弹出提示信息,并显示已用时间。

2025-01-07

【Windows-x64-gpu或者cpu预测】编译好的FastDeploy环境

【是否好用?】请放心,只传优质资源,下载后,使用中,有任何不明白的,请直接私信,必指导使用。 【内容概要】:已编译的FastDeploy环境,适用于Windows x64系统,并支持GPU或CPU加速的Paddle模型预测。 【适用人群】:面向希望在Windows环境中利用GPU或CPU加速进行Paddle模型预测的开发者、数据科学家和机器学习工程师。 【使用场景及目标】:解决Windows平台部署和运行Paddle模型,特别是在需要高性能计算的情况下。 【使用方法】:下载并解压 fastdeploy-win-x64-gpu.zip 至目标文件夹。准备环境:对于GPU加速,需安装相应的CUDA和cuDNN;CPU-only环境下无需额外驱动。加载模型:使用FastDeploy API接口加载您的深度学习模型,参考官方文档了解支持格式和操作步骤。测试模型:编写简单脚本验证模型能否正确加载并在选定硬件(GPU或CPU)上正常工作。优化性能:调整批处理大小等参数以优化性能,并探索其他选项提高推理速度。项目集成:将FastDeploy集成到应用程序中,开始利用其强大的预测能力。

2024-12-30

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除