一、题目描述
二、题目分析与设计思路
题目中要求最小期望检索事件,该问题具有最优子结构性质且具有贪心选择性质,子结构性质位较大的数离较小的数越近越优(相差较小的两个数越近越优),容易得到最优策略为:尽可能地将较小检索概率的文件放在较大检索概率的文件的最近位置。
三、代码与实验结果
#include <iostream>
#include <iomanip>
#include<fstream>
#include <cmath>
using namespace std;
float fun(int* num, int c, int sum) {
float mut = 0.0;
int a[20];
for (int i = 0; i < c - 1; i++) {
for (int j = 0; j < c - 1 - i; j++) {
if (num[j] < num[j + 1]) {
int temp = num[j + 1];
num[j + 1] = num[j];
num[j] = temp;
}
}
}
a[10] = num[0];//把最大的数放在中间位置,两边放较小数
int r = 1, l = 1;
for (int i = 1; i < c; i++) {
if (i % 2 == 1) {
a[10 + r] = num[i];//右侧放较小的数
r++;
}
else {
a[10 - l] = num[i];//左侧放更小的数
l++;
}
}
l--;
r--;
for (int i = 10 - l; i < 10 + r; i++) {//计算概率
for (int j = i + 1; j <= 10 + r; j++) {
mut += a[i] * a[j] * (j - i);
}
}
float result = mut / (sum*sum);
return result;
}
int main() {
ifstream in("C://Users//86133//Desktop/input.txt");
ofstream out("C://Users//86133//Desktop/output.txt");
int time[20], sum = 0;
int c;
in >>c;
for (int i = 0; i < c; i++) {
in >> time[i];
sum += time[i];
}
float a = fun(time, c, sum);
out << setprecision(6)<<a;//保留6位小数
in.close();
out.close();
return 0;
}
input.txt
output.txt
四、代码分析
代码思路:将概率从大到小排序,先将第一个数放在数组a里,然后将第二个数字放在其右边然后将第三个数字放在第一个数的左边(也可以把第二个数放在左边,第三个数放在右边),第四个第五个数分别放在最右侧和最左侧。
数组a的存储情况如图所示(假设A0-An已0经从高到低排好序):
··· | A4 | A2 | A0 | A1 | A3 | ··· |
或
··· | A3 | A1 | A0 | A2 | A4 | ··· |
时间复杂度计算:
五、总结
当一个问题具有最优子结构性质时,可以用动态规划,有时可以用更为简单有效的算法——贪心算法,每一个子问题都贪心得到的结果整体也就是最优最“贪”的。贪心算法难点在于找到贪心策略,在解题的过程中我们要勇于尝试,不断试错,不断优化策略才有可能找到最好的贪心策略。